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Mission-Oriented Seismic Research Program 
2015 Annual Technical Review and Meeting 

UH Hilton 
4800 Calhoun Road, Houston, Texas, 77004 

(On the UH Main Campus, entrance 4 (four), University Drive off Calhoun Road,  
below ground parking, at the hotel ) 

 
The meeting and breakfast will be in the Plaza Room and lunch in Shamrock A. 
The dinner on Friday, June 5th at 6:00PM is in Shamrock A.  
 

AGENDA 
 
Thursday, June 4, 2015 
 
7:30 AM Welcome, breakfast/reception 
 
8:00 AM Technical Program begins: Meeting Overview 
 

Green’s theorem tutorial Part I: for wave field separation (separation of 
reference and scattered wave-fields, and for de-ghosting) 
Arthur B. Weglein* 
 

9:00 AM Preprocessing in the PS space for on-shore seismic processing: removing 
ground roll and ghosts without damaging the reflection data 
Jing Wu* 
 

9:30 AM Preprocessing in displacement space for on-shore seismic processing:        
removing ground roll and ghosts without damaging the reflection data 
Jing Wu* 

 
9:50 AM Morning break 
 
10:15 AM Green’s theorem tutorial Part II: for wave field prediction: imaging conditions, 

one-way and two-way wave equation migration for a more effective and 
capable RTM (Claerbout III imaging for migrating in a volume with two way 
propagating waves) 

                        (Glossary of imaging conditions:  in our usage, Claerbout imaging I is the 
exploding reflector model, Claerbout II imaging , is the space and time 
coincidence of up and downgoing waves, and Claerbout III refers to predicting 
a coincident source and receiver experiment at depth at time equals zero.) 
These migration methods require a velocity model. 

                        Arthur B. Weglein* 
 



2 
 

                        The Clearbout II imaging principle resides behind all current leading edge 
RTM methods used in industry. Benefits of the new Claerbout III imaging for 
two way propagating waves (RTM): (1) provides added-value and advantages 
for both structural determination and amplitude analysis in migration and (2) 
provides clarity on the role of primaries and multiples in imaging and 
migration 

 
11:00 AM Claerbout II imaging condition (current leading edge RTM) and III for two 

way migration, backscatter artifacts and its removal (for example, Faqi Liu 
et.al, 2011; Crawley and Whitmore, 2012) 

                        Qiang Fu* 
 
12:00 PM        Lunch 
 
                        Claerbout III imaging for one way and two way wave migration: a new 

and more capable migration method for RTM: 
 
1:00 PM  Analysis and comparison of Claerbout III imaging condition for one way 

waves( pre-stack Stolt FK migration) and its asymptotic approximation,  that 
is, Kirchhoff migration 
Yanglei Zou*, Qiang Fu, Chao Ma, Jing Wu and Arthur B. Weglein 

 
1:30 PM Analysis and comparison of Claerbout II imaging (current leading edge RTM) 

for one way propagating waves and Claerbout III imaging for one way 
propagating waves 

                        Yanglei Zou* 
 
2:00 PM  Afternoon break 
 
2:30 PM  Claerbout III imaging for structure and amplitude analysis beneath a reflector 

Qiang Fu* 
 
3:10 PM Claerbout III imaging for two way propagating waves provides a clear and 

definitive response to the role of primaries and multiples in imaging and 
inversion: Multiples: signal or noise? 

                        Arthur B. Weglein* 
                         

Only primaries are required for imaging and inversion, but when there is 
inadequate acquisition of primaries, multiples can be used to provide an 
approximate image of an unrecorded primary  

 
3:40 PM         A clear example of using multiples to enhance seismic imaging -- providing an 

approximate image of an unrecorded primary 
                        Chao Ma* 
 
4:10 PM Multiples can be useful (at times) to enhance imaging, by providing an 

approximate image of an unrecorded primary, but it’s always primaries that are 
migrated or imaged   



3 
 

                        What’s the big picture, bottom line and our seismic imaging and inversion 
strategy with respect to primaries and multiples----the updated seismic 
processing chain   

                        Arthur B. Weglein* 
 
Friday, June 5, 2015  
 
7:30 AM Breakfast/reception/welcome 
 
8:30 AM A tutorial on the inverse scattering series: distinct isolated task subseries for 

removing free surface and internal multiples 
Arthur B. Weglein* 
 
Multiples: part I: Background/Introduction/Update   
 

9:15 AM Multiple attenuation: recent progress, and a plan to address open, prioritized 
and pressing issues and challenges 
Arthur B. Weglein* 

 
10:00 AM Morning Break 
 
10:15 AM Reviewing the historic Saudi Aramco onshore ISS internal multiple attenuation 

examples 
Qiang Fu* 

 
10:40 AM Inverse scattering series internal multiple attenuation in an absorptive 

dispersive earth, without knowing, needing or estimating elastic or inelastic 
subsurface properties: update with pre-stack data examples 
Jing Wu*  

 
Multiples: part II: Advances to enhance the effectiveness of free surface 
multiple elimination and internal multiple attenuation algorithms 
 

11:00 AM  The impact of accommodating the source radiation pattern on the inverse 
scattering series free-surface multiple elimination algorithm on data with 
interfering or proximal primaries and multiples 

   Jinlong Yang* 
 
11:30 AM Lunch 
 
12:30 PM The significance of incorporating a 3-D point source in the inverse scattering 

series free-surface multiple elimination algorithm for a 1-D subsurface 
Xinglu Lin* 
 

1:00 PM  Incorporating a 3-D point source in the inverse scattering series internal 
multiple attenuation algorithm for a 2-D subsurface 

   Xinglu Lin* 
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1:20 PM Afternoon Break 
 

Multiples: part III: Beyond internal multiple attenuation: algorithms for 
eliminating internal multiples and spurious events, providing essential and 
necessary added value when there are numerous generators and 
interfering and proximal primaries and multiples 

 
1:35 PM  A new Inverse Scattering Series (ISS) internal-multiple-attenuation algorithm 

that predicts the accurate time and approximate amplitude of the first-order 
internal multiples and addresses spurious events: Analysis and Tests in 2D 

   Chao Ma* 
 
2:10 PM   An internal-multiple elimination algorithm for all first-order internal multiples 

for a 1D earth 
   Yanglei Zou* 
 
2:45 PM  Inverse scattering series depth imaging: direct depth imaging without a 

velocity model, the Marmousi model tests, and a plan for a documented code 
delivery this year (2015) 
Fang Liu* and Arthur B. Weglein 

  
Amplitude analysis: Direct inverse solutions and a comparison with 
iterative linear inverse (the latter resides behind current AVO/FWI) 
 

3:20 PM   A direct inverse solution for AVO/FWI parameter estimation objectives 
Arthur B. Weglein* 

 
3:50 PM   A first comparison of the inverse scattering series non-linear inversion and the 

iterative linear inversion for parameter estimation 
Jinlong Yang* and Arthur B. Weglein  
 

 SUMMARY  
 
4:15 PM  Summary of M-OSRP proprietary code delivery to-date and schedule of on-

going code development and delivery  
                        Jim Mayhan* 
                          
                        Primaries and multiples: the effective removal of all multiples remains an open 

issue and challenge- a strategy, plan, recent progress and steps towards 
delivering the next and necessary level of effectiveness and capability 

   Arthur B. Weglein* 
 
5:15 PM  Meeting adjournment 
6:00 PM   Reception and dinner 
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Introduction: 2015 M-OSRP Annual Report

Arthur B. Weglein

The industry downturn and M-OSRP

We recognize that with the current downturn in the petroleum industry that budgets and expenditures
are examined and scrutinized, and naturally enough that process is also taking place within M-
OSRP. Most importantly, it is incumbent upon us, more than ever, to describe what benefit, delivery
and value derived, and derives, from your support and sponsorship of M-OSRP. The 2015 Annual
Technical Review and the Annual Report are part of how we communicate the value delivered to-
date, our delivery this year, and our plans going forward.

The Annual Report is organized to sync with the Annual Technical Review

The 2015 M-OSRP Annual Report documents the technical progress and deliverables this past year,
and describes our near term and longer term priorities, plans and deliverables.

A memory stick with this report will be distributed at the Annual Technical Review June 4, 5,
2015 and will be express-mailed to those sponsors, at great distances from Houston, who could not
attend.

The way the Annual Report is organized allows those attending the Annual Technical Review to
see the Reports, submitted and published papers and SEG Abstracts in the order of the presentations
on the Agenda. The Agenda of the Annual Technical Review can be found on pages 1-4 of this
Report.

The Annual Technical Review on June 4,5 will be video recorded with synced slides and will
be available as a link on the M-OSRP website, two weeks after the meeting.

As part of our Annual Reporting, below please find links to video recordings with synced slides
with: (1) a March 9, 2015 M-OSRP executive summary overview and (2) two key-note invited
presentations at international SEG workshops/conferences this past year that supplement and com-
plement the Report and Technical Review.

Executive summary video: the M-OSRP delivered added value and documented E&P impact,
March 9, 2015

http://mosrp.uh.edu/news/mar-9-exec-summary-video

Keynote address, Abu Dhabi, March 31st, 2015 presented at the SEG FWI, Workshop, Filling
the gaps in Abu-Dhabi “A direct inversion method for FWI/AVO objectives”

http://mosrp.uh.edu/news/mar-30-apr-1-fwi-workshop-abu-dhabi

Key-note address, Kuwait Oil Company SEG Workshop, December 3, 2014, “Multiples:
signal or noise?”

5
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http://mosrp.uh.edu/news/a-b-weglein-nov-2014-m-osrp-executive-summary-and-2-video-for-kuwait-
oil-company-seg-workshop-december-1-3-2014

The organization of the Annual Report

The Report has two parts: in the first part there are Green’s theorem methods for: (1) wave sepa-
ration and (2) wave field prediction. This year, the former, for wave field separation, provides an
advance for on-shore preprocessing for predicting and separating the reference wave (including
ground roll) from reflection data, without damaging the reflection data.

The Green’s theorem for wave field prediction provides a fundamentally new approach and
method for RTM, with superior structural imaging and amplitude analysis capability compared
to the current leading-edge methods for RTM employed in industry today. This new method for
imaging in a volume with two way propagating waves, also provides a definitive and unequivocal
conclusion to the role of primaries and multiples in migration and inversion.

The new RTM method, that we are reporting on, fits within current, conventional, mainstream
migration thinking, and hence requires a velocity model. For this project, we seek to demonstrate
value and generate interest with our sponsors in the promise and relevant added value that it repre-
sents. We plan to take this project a few more steps to show its potential with structural complexity,
with, for example, rapidly undulating reflectors and pinch-outs.

In the second part of this report, we describe the outstanding open issues and pressing challenges
in offshore and on-shore multiple removal — and our strategy, progress and plans — and our
schedule of delivery of the next generation of required higher effectiveness and capability.

We also describe progress on the inverse scattering series direct depth imaging without a ve-
locity model and the plan to add a well-documented code to our sponsor’s seismic imaging toolbox
this year (2015).

The direct inversion for parameter estimation from the inverse scattering series is reviewed,
and a first clear and useful comparison with iterative linear inversion (that resides behind AVO and
FWI) is described and analyzed. There are many significant and substantive differences between the
direct solution for changes in earth mechanical properties provided from the inverse scattering series
and iterative linear methods. Please see the video in the link above shown at the SEG Abu Dhabi
Workshop. In this specific study in this report we examine, analyze and compare these approaches
under the simplest possible situation, a plane wave normally incident on an acoustic medium, with
one reflector and where only the velocity changes. That allows us to isolate one difference in these
approaches, and where there is agreement on the data requirements. It is a pure and perfect test of
the algorithms when that’s the only issue. The inverse scattering subseries for parameter estimation
always converges, whereas the iterative linear inverse does not, and when they both converge the
ISS converges much faster. Under more realistic and important circumstances the differences are
much more serious and substantive, but there is never a chance the iterative linear updating and the
direct inverse derived from the inverse scattering series are equivalent.

In the general area of amplitude analysis, we plan to work together with Doug Foster to deter-
mine the exploration, appraisal and development circumstances where a more accurate parameter
estimation provides relevant added-value, for example, for drill, no-drill decisions in frontier explo-
ration, and optimizing development drilling.
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Our project on 4D applications will be a central part of our plans going forward.

Multiples: the stand-alone capability delivered by M-OSRP has become the industry
standard and widely recognized and indicated choice under the most daunting and
challenging circumstances

M-OSRP’s delivery of the distinct inverse scattering series free surface multiple eliminator and the
internal multiple attenuator has provided stand-alone industry wide capability that’s documented
in the March 9th, 2015 executive summary video with a selection of published papers from CGG,
Western Geco/Schlumberger, and PGS, among service companies, and a plethora of oil companies
with 2D and 3D field data examples. The one characteristic that separates the multiple attenuation
methods that only M-OSRP pioneers, develops and delivers from all others, is that it is direct and
doesn’t require subsurface information. What once made many uncomfortable and was considered
irrational, controversial and difficult to believe has now become fully mainstream and conventional.

Multiples: the challenge today, provide the next generation of significantly higher
capability in removing multiples without damaging proximal or interfering primaries

There are many offshore and on-shore areas and plays where the nature of the problem with multi-
ples is fundamentally beyond our industry’s current collective capability to effectively address.

The main near term focus for M-OSRP will be to deliver the next level of multiple removal
capability, internal multiple elimination, for circumstances where primaries and multiples are prox-
imal and interfering, without damaging primaries. That next generation of capability will be de-
signed specifically for the most complex and daunting off-shore and on-shore plays. That goal will
be reached, and that capability will be delivered, directly and without needing or requiring any
subsurface information.

M-OSRP is uniquely qualified, by its history and experience, to deliver that next level of ef-
fectiveness — and thereby to open E&P opportunities and plays that are currently precluded as
off-limits or unreasonable high risks in the most difficult and forbidding off-shore and on-shore
arenas.

We are grateful for your encouragement and support, and we will continue to work hard
and effectively to earn and deserve your confidence and trust. M-OSRP has been, and remains,
a good investment for research, delivering new high impact seismic capability, and educating,
mentoring and training students.

We look forward to seeing you at our technical review June 4, 5 at the UH Hilton.

Best regards,

Art

Arthur B. Weglein

May 27, 2015
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Preprocessing in the PS space in preparation for onshore seismic
processing: removing ground roll and ghosts without damaging the

reflection data

Jing Wu & Arthur B. Weglein

Abstract

Prerequisites to processing, such as the removal of the reference wave and the ghosts, are
important preparation for seismic processing of onshore data. This paper derives an elastic
Green’s theorem-based wave-separation algorithm for data in the PS space. Application of the
algorithm presented in this paper can effectively remove both the reference waves (including
the direct wave and the surface wave) and the ghosts. The method is tested on a layered elastic-
earth model. The results indicate that it is effective for reducing the ground roll and ghosts
without harming the upgoing reflection, in preparation for onshore processing.

1 Introduction

Onshore seismic exploration and processing seek to use reflection data (the scattered wavefield)
to detect the subsurface information. The measured total wavefield consists of the reflection data
and the reference wavefield, which contains the surface wave/ground roll; hence, it is necessary to
separate the reference wave and the scattered wave. Typically, filtering methods are employed to
remove the reference wave, particularly the ground roll, but that occurs at the expense of damaging
the reflection data when ground roll is interfering with the scattered wavefield. As a flexible and
useful tool, Green’s theorem provides methods that can separate the reference wave from the re-
flection data without damaging the reflection data. Application of these methods represents unique
advantages for offshore plays (e.g., Weglein et al., 2002; Zhang, 2007; Mayhan et al., 2011; Mayhan
and Weglein, 2013; Tang et al., 2013; Yang et al., 2013).

For onshore plays, a key problem is the complex and laterally varying near surface. Our study
starts with a simpler example by assuming that the space just below the free surface is homogeneous
and known but the earth below the measurement surface is unknown and heterogeneous. Wu and
Weglein (2014) derive the elastic Green’s theorem reference and scattered wave separation algo-
rithm for data in the PS space, and they successfully test the algorithm on an initial model without
subsurface reflectors. In this paper, for a more realistic situation, we also add one reflector in the
tested model so that the measured data contain both the reference wave and the scattered wave.

In addition, for buried sources and receivers, the reflection data contain not just upgoing waves
but also ghosts, whose existence can cause notches in the spectrum. Thus, after the reflection data
have been obtained, removal of the ghosts from the reflection data is another prerequisite. In this
study, we will assume that the source is located slightly above the air/earth surface (could be in-
finitely close, or on the air/earth surface) and the receivers are slightly beneath the air/earth surface.
Therefore, there are receiver ghosts but no source ghosts in our study. Green’s theorem can also
be applied for deghosting, by taking a whole-space homogeneous elastic medium as the reference
medium. A numerical test is shown for examining the accuracy of the deghosting algorithm.

9
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2 Background of 2D elastic wave theory

We derive the wave-separation method for onshore application, starting with the elastic formulation.

For convenience, the basis is changed from u =
(
ux
uz

)
to Φ =

(
φP

φS

)
. u represents the

displacement, consisting of x and z components; Φ has P-wave and S-wave components.

In the PS space, the basic wave equations (Weglein and Stolt, 1995; Zhang, 2006) are

L̂Φ = F, (1)

L̂Ĝ = δ, (2)

L̂0Φ0 = F, (3)

L̂0Ĝ0 = δ, (4)

where L̂ and L̂0 are the differential operators that describe the wave propagation in the actual
medium and the reference medium, respectively; F is the source term; Ĝ and Ĝ0 are the corre-
sponding Green’s function operators for the actual and reference media.

For a homogeneous medium,

L̂0 =

( 52 + ω2

α2
0

52 + ω2

β2
0

)
=
(
L̂P0

L̂S0

)
, (5)

where α0 and β0 are P-wave velocity and S-wave velocity, respectively; and

Ĝ0 =
(
ĜP0 0
0 ĜS0

)
. (6)

Eqn.12 and Eqn.A-8 are diagonal. However, in an actual inhomogeneous medium, Ĝ is no longer a
diagonal matrix, but has a form

Ĝ =
(
ĜPP ĜPS

ĜSP ĜSS

)
. (7)

For the superscripts, the right one represents the wave type of source side, whereas the left one
represents the wave type of receiver side.

3 Green’s theorem wave-separation algorithm in the PS space

3.1 Description of the model for wave separation

Transforming the elastic wave equations from displacement space to PS space, we have

L̂Φ = F,

L̂0Ĝ0 = δ,

L̂ = L̂0 − V̂. (8)
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Figure 1: A generic model describing the onshore experiment. In this and subsequent figures, the
blue triangles represent the receivers.

The basic forms of these equations are the same as those for the acoustic case. On the basis of the
successful applications of the Green’s theorem wave-separation to the acoustic case (e.g., Zhang,
2007; Mayhan et al., 2011), it is feasible to apply the Green’s theorem wave-separation algorithm
to the elastic world in a similar way.

As is seen in Figure 1, the model here consists of a half-space of air and a half-space of elastic
earth. Receivers are buried in the earth, and the source is located slightly above the free surface
(F.S.). The measurement surface (M.S.) can be infinitely close to the free surface, as in the case
of the on-surface acquisition, or several meters below the free surface, as in the case of the buried-
receiver acquisition. However, the receivers are coupled with the elastic medium in both situations.

3.2 Reference-wave and scattered-wave spearation in PS Space

Figure 2: Reference medium for separation of the reference wave and the scattered wave.

The reference wave is the wave in the reference medium. In exploration seismology, it is useful
for us to choose the reference medium to agree with the actual earth at and above the measurement
surface. If we assume that the actual earth has known and homogeneous near-surface properties, the
simplest reference medium can be chosen to be two discontinuous half-spaces, with homogeneous
air over homogeneous elastic earth (see Figure 2). Two sources act on the reference medium (see
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Figure 3: Reference wave separated out from the total wavefield with the surface integral along
the closed surface marked by the dashed line, and the evulation point r is below the measurement
surface.

Figure 4: Scattered wave separated out from the total wavefield with the surface integral along
the closed surface marked by the dashed line, and the evulation point r is ablove the measurement
surface.



13

Figure 3): the active source (S1), generating the reference wave, and the earth’s heterogeneity, or
passive source (S2), generating the scattered wave.

Wu and Weglein (2014) have shown that, with the application of Green’s theorem, a semi-
infinite surface integral with the measurement surface as its upper boundary will separate out the
reference wavefield Φ0 from the total wavefield Φ, if the evaluation point r is inside the volume
and below the measurement surface (see Figure 3). On the other hand, the surface integral with the
measurement surface as its lower bounded will separate out the scattered wave Φs from Φ, for r
above the measurement surface (see Figure 4).

The Green’s theorem-based formula for separating reference waves and scattered waves in the
space-frequency (x, ω) domain is

∮ (
Φ(r

′
, rs, ω) · ∇′Ĝ0(r

′
, r, ω)−∇′Φ(r

′
, rs, ω) · Ĝ0(r

′
, r, ω)

)
· n̂dS′

=
{

Φ0(r, rs, ω) r is below the M.S.,
Φs(r, rs, ω) r is above the M.S.,

(9)

Φ0(r, rs) =
(

ΦP
0 (r, rs)

ΦS
0 (r, rs)

)
,Φs(r, rs) =

(
ΦP
s (r, rs)

ΦS
s (r, rs)

)
, Φ(r, rs) =

(
ΦP (r, rs)
ΦS(r, rs)

)
, and

Green’s function Ĝ0(r′ , r, ω) for the reference medium is

Ĝ0(r
′
, r, ω)

=
(
ĜP0 (r′ , r, ω) + ĜPP0 (r′ , r, ω) ĜPS0 (r′ , r, ω)

ĜSP0 (r′ , r, ω) ĜS0 (r′ , r, ω) + ĜSS0 (r′ , r, ω)

)

=
1

2π

∫
eikx(x′−x)dkx

( eiν2|z
′−z|

2iν2
0

0 eiη2|z
′−z|

2iη2

)
+

 Ṕ P̀ eiν2zeiν2z
′

2iν2
ŚP̀ eiη2zeiν2z

′

2iη2

Ṕ S̀ e
iν2zeiη2z

′

2iν2
ŚS̀ e

iη2zeiη2z
′

2iη2

 ,
(10)

where Ṕ P̀ , Ṕ S̀, ŚP̀ , ŚS̀ represent the reflection coefficients along the air/elastic-earth boundary,
the subscript 2 represents the elastic half-space, and

ν2 =
{ √

k2
α2
− k2

x if kx < kα2

i
√
k2
x − k2

α2
if kx > kα2

kα2 = ω
α2

,

η2 =


√
k2
β2
− k2

x if kx < kβ2

i
√
k2
x − k2

β2
if kx > kβ2

kβ2 = ω
β2

.

where α2 and β2 represent P-wave and S-wave velocities, respectively, in the elastic medium.

Since both Φ and Ĝ0 in the integral are tensors, the symbol · represents a tensor product. (The
derivation of the Green’s function in PS space and Green’s theorem reference and scattered wave
separation algorithm in PS space are shown in ?.)

If the measurement surface is horizontal, the outward normal vector n̂ = (0,∓1), where -1
corresponds to the situation shown in Figure 3, and +1 corresponds to the situation in Figure 4.
Then Equation 1 can be rewritten as
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∫ (
Φ(r

′
, rs, ω) · ∂z′Ĝ0(r

′
, r, ω)− ∂z′Φ(r

′
, rs, ω) · Ĝ0(r

′
, r, ω)

)
dx′

=
{ −Φ0(r, rs, ω) r is below the M.S.,

Φs(r, rs, ω) r is above the M.S..

(11)

Using the reciprocity of the Green’s function and Fourier transforming over x in Equation 1
with

∫
e−ikxxdx, the formula in the wavenumber-frequency (kx, ω) domain will be

[
Φ̃(kx, z, rs, ω) · ∂z′ ˜̂GT

0 (kx, z, z′, ω)− ∂z′Φ̃(kx, z, rs, ω) · ˜̂GT
0 (kx, z, z′, ω)

]
|z′=εg

=
{ −Φ̃0(kx, z, rs, ω) z ≥ ε+g ,

Φ̃s(kx, z, rs, ω) z ≤ ε−g .
(12)

Tildes represent the terms in the kx domain, ˜̂GT
0 is the transpose of ˜̂G0, and εg is the receiver’s

depth. z′ is evaluated at εg.

We should emphasize that by applying the algorithm in the (kx, ω) domain, we can arrange to
locate the output point r on the measurement surface to separate the actual measured data into the
reference wave and the scattered wave. We can obtain the reference wave of the measured data by
choosing r on the measurement surface to be part of the volume below the measurement surface, or,
we can obtain the scattered wave of the measured data by choosing r on the measurement surface
to be part of the volume above the measurement surface.

3.3 Deghosting the Scattered Wave in PS Space

Figure 5: Reference medium used for deghosting the scattered wave

Green’s theorem can be further applied to deghost the reflection data. For this exercise, the
properties along the measurement surface are assumed to be homogeneous and known. The refer-
ence medium is a whole-space of homogeneous elastic earth(see Figure 5), whose properties are
consistent with those of the actual earth along the measurement surface. Similarly to the case for
the theory that is used for separation of the reference wave and scattered wave, here a semi-infinite
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Figure 6: Upgoing wave separated out from the reflection data by using the surface integral along
the closed surface marked by the dashed line, and the evulation point r is above the measurement
surface.

surface integral whose lower boundary is the measurement surface will separate out the upgoing
wave Φup from the scattered wave Φs, for r inside the volume (see Figure 6).

The elastic Green’s theorem deghosting formula in the space-frequency (x, ω) domain is

Φup(r, rs, ω) =
∮ (

Φs(r
′
, rs, ω) · ∇′Ĝ0(r

′
, r, ω)−∇′Φs(r

′
, rs, ω) · Ĝ0(r

′
, r, ω)

)
· n̂dS′, (13)

where Φup(r, rs) =
(

ΦP
up(r, rs)

ΦS
up(r, rs)

)
is the separated upgoing wave, and Ĝ0(r′, r, ω) of the

reference medium is

Ĝ0(r
′
, r, ω) =

(
ĜP0 (r′ , r, ω) 0

0 ĜS0 (r′ , r, ω)

)
=

1
2π

∫
eikx(x′−x)dkx

(
eiν2|z

′−z|
2iν2

0

0 eiη2|z
′−z|

2iη2

)
.

(14)
Similarly, we can Fourier transform Equation 5 to the (kx, ω) domain if the measurement surface is
horizontal and flat.

4 Numerical Evaluation

Layer Number P-Velocity (m/s) S-Velocity (m/s) Density (kg/m3)
1 340 0 3
2 2000 1200 1500
3 4000 3000 1800

Table 1: Parameters of the air/elastic-earth model.
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Figure 7: The air/elastic-model for the numerical tests.

4.1 Evaluation of the reference-wave and scattered-wave separation results

The methods that we develop in this paper for separating the reference wave and the scattered wave,
and for deghosting, we can test on an air/elastic-earth model. As is shown in Figure 7, the model
consists of a half-space of air and a half-space of two-layered elastic earth, the parameters of which
are listed in Table 1. A P source is applied on the free surface. The receivers are 5m below the free
surface and record both P- and S-waves. The output point r is on the measurement surface and the
formula in the (kx, ω) domain is applied.

The data for the total wavefields in the PS space (Figure 8a for ΦP and Figure 8d for ΦS) are
created with the convolution of the wavelet and the analytic forms of Green’s function, and consist of
the reflection data and the reference wave, which includes the ground roll. They will be substituted
into Equation 4 for separation of the reference wave and the scattered wave. Since the output r is
on the measurement surface, we can obtain the reference wave (Figure 8b for ΦP

0 and Figure 8e
for ΦS

0 ) of measured data by choosing r to be part of volume below, and we can also obtain the
scattered wave (Figure 8c for ΦP

s and Figure 8f for ΦS
s ) of the measured data by choosing r to be

part of the volume above the measurement surface. All the images are at the same scale. Comparing
the separated reference waves from the Green’s theorem wave-separation algorithm with those of
the input data, all of the amplitudes and phases match well. The same close match applies for the
scattered waves.

4.2 Evaluation of the deghosting results

The scattered wavefield (Figure 9a for ΦP
s and Figure 9d for ΦS

s ) can be further separated into
upgoing and downgoing waves. We apply the deghosting algorithm to separate the upgoing wave
(Figure 9b for separated ΦP

up and Figure 9e for separated ΦS
up), by choosing the output point r on

the measurement surface to be part of the volume above. To evaluate the result, we analytically
create data that have just upgoing waves by using the given model (Figure 9c for synthetic ΦP

up

and Figure 9f for synthetic ΦS
up). Comparing Figure 9b with Figure 9c for the P components,

and comparing Figure 9e with Figure 9f for the S components, we see that the upgoing waves are
effectively extracted.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Results from separating the reference and scattered wave. (a) The total P wave; (b) the
separated P component of the reference wave, by choosing r to be part of volume below; (c) the
separated P component of the scattered wave, by choosing r to be part of the volume above; (d)
the total S wave; (e) the separated S component of the reference wave; and (f) the separated S
component of the scattered wave.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Deghosting results. (a) The P component of the input scattered wave; (b) the separated
P component of the upgoing wave, by choosing r to be part of the volume above; (c) the synthetic
P component of upgoing wave, obtained with convlution of the wavelet and the analytic form of
Green’s function; (d) the S component of the input scattered wave; (e) the separated S component
of the upgoing wave; and (f) the synthetic S component of the upgoing wave.
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5 Conclusions

We apply the elastic Green’s theorem method to separate the reference wave and the scattered wave
and to remove the ghosts from the reflection data. For onshore experiments, this method has the
potential to remove the ground roll, which is part of the reference wave and is a major and serious
issue, and also to remove the ghosts from the reflection data, all without damaging the reflection
data. To make the method more readily applicable in practice, our research plan is to reduce the data
requirements and to pursue an alternative approach that does not require near-surface information.
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Preprocessing in the PS space for on-shore seismic processing: removing ground roll and ghosts with-
out damaging the reflection data
Jing Wu and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

Prerequisites (e.g., the removal of the reference wave and the
ghosts) are important for on-shore seismic processing. This
paper derives an elastic Green’s theorem wave separation al-
gorithm for data in the PS space. Applying the algorithm pre-
sented in this paper, both the reference waves (including the
direct wave and the surface wave) and the ghosts can be ef-
fectively removed. The method is tested on a layered elastic
earth model. The results indicate its effectiveness for reducing
the ground roll and ghosts, and without harming the up-going
reflection, in preparation for on-shore processing.

INTRODUCTION

On-shore seismic exploration and processing seeks to use re-
flection data (the scattered wavefield) to detect the subsurface
information. The measured total wavefield consists of the re-
flection data and the reference wavefield that contains the sur-
face wave/ground roll; hence, it is necessary to separate the
reference wave and the scattered wave. Filtering methods are
typically employed to remove the reference wave, particularly
the ground roll, but at the expense of damaging reflection data
when ground roll is interfering with the scattered wavefield.
As a flexible and useful tool, Green’s theorem provides meth-
ods that can separate the reference wave from the reflection
data without damaging the reflection. The application of these
methods represents the unique advantages for off-shore plays
(e.g., Weglein et al., 2002; Zhang, 2007; Mayhan et al., 2011;
Mayhan and Weglein, 2013; Tang et al., 2013; Yang et al.,
2013).

For on-shore plays, one of the key problems is the complex and
laterally varying near surface. Our study starts with a simpler
example, by assuming the space just below the free surface
is homogeneous and known, but the earth below the measure-
ment surface is unknown and heterogenous. Wu and Weglein
(2014) derive the elastic Green’s theorem reference and scat-
tered wave separation algorithm for data in the PS space, and
successfully test the algorithm on an initial model without sub-
surface reflectors. In this paper, for more realistic situation, we
add one reflector in the tested model so that the measured data
contain both the reference wave and the scattered wave.

In addition, for buried sources and receivers, not only up-going
waves are in the reflection data but also ghosts, whose exis-
tence can cause notches in the spectrum. Thus, after obtain-
ing the reflection data, removing the ghosts from the reflection
data is another prerequisite. In this study, we will assume the
source is located slightly above the air/earth surface (could be
infinitely close, or on the air/earth surface), and the receivers
are slightly beneath the air/earth surface. Therefore, there are
receiver ghosts but no source ghosts in our study. Green’s the-

orem can also be applied for deghosting, by taking a whole
space homogeneous elastic medium as reference. A numer-
ical test is shown to examine the accuracy of the deghosting
algorithm.

GREEN’S THEOREM WAVE SEPARATION THEORY
IN THE PS SPACE

Background of 2D elastic wave theory

We are deriving the wave separation method for on-shore ap-
plication and starting with the elastic formulation. For conve-

nience, the basis is changed from u =
(

ux
uz

)
to Φ =

(
φ P

φ S

)
.

u represents the displacement, consisting of x and z compo-
nents; whereas Φ has P-wave and S-wave components.

In the PS space, the basic wave equations (Weglein and Stolt,
1995; Zhang, 2006) are

L̂Φ = F

L̂Ĝ = δ ,

L̂0Φ0 = F,

L̂0Ĝ0 = δ ,

(1)

where L̂ and L̂0 are the differential operators describing the
properties of the actual medium and the reference medium, re-
spectively. F is the source term. Ĝ and Ĝ0 are the Green’s
function operators for the actual and reference media, respec-
tively.

The basic forms of these equations are the same as those for
the acoustic case. On the basis of the successful applications
of Green’s theorem wave separation to the acoustic case (e.g.,
Zhang, 2007; Mayhan et al., 2011), it is feasible to apply the
Green’s theorem wave separation algorithm to the elastic world
in a similar way.

Description of the model for wave separation

As seen in Figure 1, the model here consists of a half space
of air and a half space of elastic earth. Receivers are buried in
the earth, and the source is located slightly above the free sur-
face (F.S.). The measurement surface (M.S.) can be infinitely
close to the free surface, like the on-surface acquisition, or sev-
eral meters below the free surface, like the buried-receiver ac-
quisition; however, the receivers are coupled with the elastic
medium in both situations.

Reference and scattered wave separation

The reference wave is the wave in the reference medium. It’s
useful for the purpose of exploration seismology to choose
the reference medium to agree with the actual earth at and
above the measurement surface. If we assume the actual earth
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has known and homogeneous near surface properties, the sim-
plest reference medium can be chosen as discontinuous two
half-spaces, homogeneous air over homogeneous elastic earth
(see Figure 2). There are two sources acting on the reference
medium (see Figure 3). One is the active source (S1), generat-
ing the reference wave; the other is the earth heterogeneity, or
passive source (S2), generating the scattered wave.

Figure 1: A generic model describing the land experiment

Figure 2: Reference medium for reference and scattered wave
separation

Figure 3: Reference wave separated from the total wavefield
with surface integral along the dash line, for r below the M.S.

Figure 4: Scattered wave separated from the total wavefield
with surface integral along the dash line, for r above the M.S.

Wu and Weglein (2014) have shown that, by applying Green’s
theorem, a semi-infinite surface integral upper bounded by the
measurement surface will separate the reference wavefield Φ0
from the total wavefield Φ, for the evaluation point r inside
the volume and below the measurement surface (see Figure 3);
whereas, the surface integral lower bounded by the measure-

ment surface will separate the scattered wave Φs from Φ, for r
above the measurement surface (see Figure 4).

The Green’s theorem based formula for reference and scattered
wave separation in the space-frequency (x,ω) domain is∮ (

Φ(r′,rs,ω) ·∇′Ĝ0(r′,r,ω)−∇′Φ(r′,rs,ω) · Ĝ0(r′,r,ω)
) · n̂dS′

=
{

Φ0(r,rs,ω) r is below the M.S.,
Φs(r,rs,ω) r is above the M.S.,

(2)
where the symbol ′·′ represents a tensor product.

Φ0(r,rs)=
(

ΦP
0 (r,rs)

ΦS
0(r,rs)

)
, Φs(r,rs)=

(
ΦP

s (r,rs)
ΦS

s (r,rs)

)
, Φ(r,rs)=(

ΦP(r,rs)
ΦS(r,rs)

)
, and Green’s function Ĝ0(r′,r,ω) for the ref-

erence medium is

Ĝ0(r′,r,ω)

=
(

ĜP
0 (r′,r,ω)+ ĜPP

0 (r′,r,ω) ĜPS
0 (r′,r,ω)

ĜSP
0 (r′,r,ω) ĜS

0(r
′,r,ω)+ ĜSS

0 (r′,r,ω)

)

=
1

2π

∫
eikx(x′−x)dkx

 eiν2 |z′−z|
2iν2

+ ṔP̀ eiν2zeiν2z′

2iν2
ŚP̀ eiη2zeiν2z′

2iη2

ṔS̀ eiν2zeiη2z′

2iν2

eiη2 |z′−z|
2iη2

+ ŚS̀ eiη2zeiη2z′

2iη2

 ,
(3)

where ṔP̀, ṔS̀, ŚP̀, ŚS̀ represent the reflection coefficients along
the air-elastic boundary, the subscript ’2’ represents the elastic
half-space, and

ν2 =


√

k2
α2 − k2

x if kx < kα2

i
√

k2
x − k2

α2 if kx > kα2

kα2 = ω
α2

,

η2 =


√

k2
β2
− k2

x if kx < kβ2

i
√

k2
x − k2

β2
if kx > kβ2

kβ2
= ω

β2
.

α2 and β2 represent P and S velocities in the elastic medium.

If the measurement surface is horizontal, the outward normal
vector n̂ = (0,∓1), where -1 is corresponding to the situation
as shown in Figure 3, and 1 is for Figure 4.

Using reciprocity of the Green’s function and Fourier trans-
forming over x in Equation 2 with

∫
e−ikxxdx, the formula in

the wavenumber-frequency (kx,ω) domain will be[
Φ̃(kx,z,rs) ·∂z′

˜̂GT
0 (kx,z,z′)−∂z′Φ̃(kx,z,rs) · ˜̂GT

0 (kx,z,z′)
]
|z′=εg

=
{ −Φ̃0(kx,z,rs) z≥ ε+

g ,

Φ̃s(kx,z,rs) z≤ ε−g .
(4)

Tildes represent the terms in kx domain, ˜̂GT
0 is the transpose of

˜̂G0, and εg is the receiver’s depth. z′ is evaluated at εg.

It is deserving emphasis that applying the algorithm in the
(kx,ω) domain, we can arrange to locate the output point r
on the measurement surface to separate the actual measured
data into the reference wave and the scattered wave. We can
obtain the reference wave of measured data by choosing r on
the measurement surface to be part of the volume below; oth-
erwise, we can obtain the scattered wave of measurement by
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choosing r on the measurement surface to be part of the vol-
ume above.

Deghosting the reflection data

Green’s theorem can be further applied for deghosting the re-
flection data. For this time, the property along the measure-
ment surface is assumed to be homogeneous and known. The
reference medium is a whole space of homogeneous elastic
(see Figure 5), whose properties are consistent with the actual
earth along the measurement surface. Similar to the theory of
reference and scattered wave separation, a semi-infinite sur-
face integral lower bounded by the measurement surface will
separate the up-going wave Φup from the scattered wave Φs,
for r inside the volume (see Figure 6).

The elastic Green’s theorem deghosting formula in space-frequency
(x,ω) domain is

Φup(r,rs,ω)

=
∮ (

Φs(r′,rs,ω) ·∇′Ĝ0(r′,r,ω)−∇′Φs(r′,rs,ω) · Ĝ0(r′,r,ω)
) · n̂dS′,

(5)

where Φup(r,rs) =
(

ΦP
up(r,rs)

ΦS
up(r,rs)

)
is the separated up wave,

and Ĝ0(r′,r,ω) of the reference medium is

Ĝ0(r′,r,ω) =
(

ĜP
0 (r′,r,ω) 0

0 ĜS
0(r
′,r,ω)

)

=
1

2π

∫
eikx(x′−x)dkx

(
eiν2 |z′−z|

2iν2
0

0 eiη2 |z′−z|
2iη2

)
.

(6)
Similarly, we can Fourier transform Equation 5 to (kx,ω) do-
main if the measurement surface is horizontal and flat.

Figure 5: Reference medium for deghosting

Figure 6: Up wave separated from the reflection data with sur-
face integral along the dash line, for r above the M.S.

NUMERICAL EVALUATION

The reference and scattered wave separation and deghosting
methods that are developed in the paper are tested on an air/elastic-
earth model. As shown in Figure 7, the model consists of a
half-space of air and a half-space of two layered elastic earth,
and the parameters are listed in Table 1. A P source is applied
on the free surface. The receivers are 5m below the free sur-
face and they record both P and S waves. The output point r is
on the measurement surface and the formula in (kx,ω) domain
is applied.

Figure 7: The air/elastic model for the numerical tests

Layer
Number

P Velocity
(m/s)

S Velocity
(m/s)

Density
(kg/m3)

1 340 0 3
2 2000 1200 1500
3 4000 3000 1800

Table 1: The air/elastic model parameters

Reference and scattered wave separation

The data of total wavefields in the PS space (Figure 8(a) for
ΦP and Figure 8(d) for ΦS) are created with the analytic forms,
consisting of the reflection data and the reference wave that in-
cludes the ground roll. They will be substituted into Equation
4 for reference and scattered wave separation. Since the output
r is on the measurement surface, we can obtain the reference
wave (Figure 8(b) for ΦP

0 and Figure 8(e) for ΦS
0) of measured

data by choosing r to be part of volume below, and we can
also obtain the scattered wave (Figure 8(c) for ΦP

s and Fig-
ure 8(f) for ΦS

s ) of measured data by choosing r to be part of
volume above. All the figures are in the same scales. Compar-
ing the separated reference waves from Green’s theorem wave
separation algorithm with those of the input data, both their
amplitudes and phases match well. The conclusion retains for
the scattered waves.

Deghosting

The scattered wavefield (Figure 9(a) for ΦP
s and Figure 9(d)

for ΦS
s ) can be further separated into up-going and down-going

waves. We apply the deghosting algorithm to separate the up
wave (Figure 9(b) for separated ΦP

up and Figure 9(e) for sepa-
rated ΦS

up), for the output point r on the measurement surface
to be part of volume above. To evaluate the result, we an-
alytically create the data with only up wave using the given
model (Figure 9(c) for synthetic ΦP

up and Figure 9(f) for syn-
thetic ΦS

up). Comparing Figure 9(b) with Figure 9(c) for P
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(a) ΦP

(b) ΦP
0

(c) ΦP
s

(d) ΦS

(e) ΦS
0

(f) ΦS
s

Figure 8: Reference and scattered wave separation results. (a)
is the total P wave; (b) is the separated P component of refer-
ence wave, by choosing r to be part of volume below; (c) is
the separated P component of scattered wave, by choosing r
to be part of volume above; (d) is the total S wave; (e) is the
separated S component of reference wave; (f) is the separated
S component of scattered wave.

components, and comparing Figure 9(e) with Figure 9(f) for S
components, the up-going waves are effectively extracted.

CONCLUSION

We apply the elastic Green’s theorem method to separate the
reference and scattered wave and remove the ghosts of the re-
flection data. It has the potential to remove the ground roll,
which is a major and serious issue and part of the reference
wave, and to remove the ghosts, for on-shore experiments with-

(a) ΦP
s

(b) ΦP
up sep

(c) ΦP
up syn

(d) ΦS
s

(e) ΦS
up sep

(f) ΦS
up syn

Figure 9: Deghosting results. (a) is P component of the input
scattered wave; (b) is the separated P component of up-going
wave, by choosing r to be part of volume above; (c) is the syn-
thetic P component of up-going wave, with analytic form; (d)
is S component of the input scattered wave; (e) is the separated
S component of up-going wave; (f) is the synthetic S compo-
nent of up-going wave.

out damaging the reflection data. To make the method more
readily applicable in practice, our research plan is in reduc-
ing the data requirements and pursuing an alternative approach
without the need for near surface information.
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Preprocessing in displacement space in preparation for onshore
seismic processing: removing ground roll and ghosts without

damaging the reflection data

Jing Wu & Arthur B. Weglein

Abstract

This paper derives an elastic Green’s theorem-based wave-separation method for onshore data
in displacement space. A single application of the algorithm presented in this paper effectively
removes both the surface wave and the ghosts. The method is tested on a layered elastic-earth
model. The results indicate that it is effective for reducing the ground roll and ghosts at the same
time onshore without harming the upgoing reflections, in preparation for onshore processing.

1 Introduction

Onshore seismic exploration and processing seek to use reflection data (the scattered wavefield) to
make inferences about the subsurface. The measured total wavefield consists of the reflection data
and the reference wave, which contains the direct wave and the surface wave/ground roll; hence, one
prerequisite in preprocessing is to separate the reference wave and the scattered wave. Typically,
filtering methods are employed to remove the reference wave, particularly the ground roll. However,
that can be at the expense of damaging the reflection data when the ground roll is interfering with
the scattered wavefield.

In addition, for buried sources and receivers, not just upgoing waves are in the reflection data
– there are also ghosts, whose existence can cause notches in the spectrum. Thus, removal of
the ghosts from the reflection data is another prerequisite. In this study, we will assume that the
source is located slightly above the air/earth surface (it could be infinitely close, or actually on, the
air/earth surface), and that the receivers are slightly beneath the air/earth surface. Therefore, there
are receiver ghosts but no source ghosts in our study.

As a flexible and useful tool, Green’s theorem provides a method to satisfy both prerequisites
– removal of the reference wave without damaging the reflection data, and removal of the ghosts
from the reflection data without destroying the upgoing reflected data. The distinct advantages of
applying the method based on Green’s theorem in offshore plays have already been demonstrated
by Weglein et al. (2002); Zhang (2007); Mayhan et al. (2011); Mayhan and Weglein (2013); Tang
et al. (2013); Yang et al. (2013).

Basically, wave separation by using Green’s theorem employs a model of the world that consists
of the reference medium and the sources. The choice of reference medium is arbitrary, and that
choice will determine what the sources have to be in order to arrange for the reference medium
and the sources together to correspond to the actual medium and to the experiment (Weglein et al.,
2003). For onshore plays, the Green’s theorem wave-separation method is applicable for data either
in displacement space (Pao and Varatharajulu, 1976; Weglein and Secrest, 1990) or in the PS space
(Wu and Weglein, 2014). In this paper, for data in displacement space, we choose a homogeneous
elastic whole space as the reference medium. In such a case, both the ground roll and the receiver
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ghosts can be removed in one step by applying the elastic Green’s theorem wave-separation algo-
rithm. Note: As is presented in a companion paper (Wu and Weglein, 2015), for data in the PS space,
the reference medium is first chosen to be composed of two homogeneous half-spaces – an air/a-
coustic half-space over an elastic half-space – and the Green’s theorem method then can extinguish
the reference wave (including the ground roll) without harming the reflection data. In that case, after
the reflection data have been obtained, the Green’s theorem provides a reflection-data-deghosting
algorithm with the choice of a whole-space homogeneous elastic-earth reference medium(Wu and
Weglein, 2015).

2 Description of the generic onshore model: reference medium + sources

Figure 1: A generic model describing the onshore experiment. In this and subsequent figures, the
blue triangles represent the receivers

As is shown in Figure 1, the generic onshore model consists of an air half-space and an elastic-
earth half-space. Receivers are buried in the earth, and the active source in the form of a vertical
force is applied on the free surface (F.S.). Therefore, ghosts exist at the receiver side only. The
measurement surface (M.S.) can be infinitely close to the free surface, as in the case of on-surface
acquisition, or several meters below the free surface, as in buried-receiver acquisition. However, the
receivers are coupled with the elastic medium in both situations.

In this paper, we will assume that the portion of earth along the measurement surface is homoge-
neous and known. Within that assumption, we choose the reference medium to be a homogeneous
elastic whole space, as shown in Figure 2, whose properties agree with those of the actual earth
along the measurement surface.

There are three sources acting on the homogeneous reference medium that is described in Fig-
ure 2. As is shown in Figure 3, one is the active source (the vertical force S1) and the other two
are passive sources (the perturbations S2 and S3) on two sides of the measurement surface, respec-
tively. S1 and S2 produce the ground roll and the downgoing waves (including direct wave and the
receiver ghost). S3 generates upgoing waves from the earth. All three of these sources contribute to
providing the actual total wavefield, and the upgoing waves due to S3 are expected to be separated
out from the waves caused by both S1 and S2.
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Figure 2: A homogeneous elastic-whole-space reference medium.

Figure 3: Three sources are acting on the reference medium that is depicted in Figure 2, and the
surface integral along the measurement surface will remove the contributions from S1 and S2, which
are inside the enclosed surface.
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3 Elastic Green’s theorem wave separation theory

3.1 Background of 2D elastic wave theory

The wave equation for a 2D elastic isotropic medium is

∇ · τ (r, ω) + ρω2u(r, ω) = f(r, ω), (1)

where
τ = λ∇ · u I + µ (∇u + u∇) . (2)

u =
(
ux
uz

)
is the displacement, the 2nd-order tensor τ =

(
τxx τxz
τzx τzz

)
is the stress, f =(

fx
fz

)
is the source, λ and µ are Lamé′s parameters, and ρ is the density.

The impulse response of the reference medium can be written as

∇ ·Σ0(r, ω) + ρ0ω
2G0(r, ω) = δ(r) I, (3)

where
Σ0ijk = λ0∂mG0mkδij + µ0(∂iG0jk + ∂jG0ik), i, j, k = x, z. (4)

The 2nd-order tensor G0 =
(
G0xx G0xz

G0zx G0zz

)
is the Green’s displacement tensor, the 3rd-order

tensor Σ0 is the Green’s stress tensor, and the source term consists of a diagonal matrix.

3.2 Elastic Green’s theorem wave-separation algorithm in the (x, ω) domain

As can be seen in Figure 3, by applying Green’s theorem, we apply the integral which is along the
closed semi-infinite surface whose lower boundary is the measurement surface, and in so doing we
separate out the portion of the wavefield that is inside the enclosed volume but that is due to S3,
located outside the volume.

Starting from Equation 1 and Equation 3, and using Green’s theorem, we can obtain the wave-
separation algorithm (see Appendix A for the detailed derivation); that is, we can extract the upgoing
waves generated by the source S3.

In the (x, ω) domain, the formula is

uup(r, ω) = −
∫
m.s.

[(n̂′ · τ (r′, ω)) ·G0(r′, r, ω)− u(r′, ω) · (n̂′ ·Σ0(r′, r, ω))]dr′, (5)

where n̂′ is the normal outside vector along the surface.

On the measurement surface, r′ = (x′, z′ = εg),

τ (x′, z′ = εg, ω) =λ0∇′ · u(x′, z′ = εg, ω) I + µ0(∇′u(x′, z′ = εg, ω) + u(x′, z′ = εg, ω)∇′),
(6)
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where εg is the receiver’s depth. Since in this paper we have assumed that the properties along the
measurement surface are homogeneous, λ0 and µ0 are constants along the measurement surface.
The choice of the reference medium depends on these invariant parameters.

By applying Equation 5 in the (x, ω) domain, we can remove the reference wave (particularly
the ground roll) and the ghosts simultaneously. There is no assumption about the shape of the
measurement surface – it can be either flat or rugose.

3.3 Elastic Green’s theorem wave-separation algorithm in the (kx, ω) domain

If the measurement surface is horizontal and flat, then n̂′ = (0, 1). Equation 5 can be Fourier
transformed into the (kx, ω) domain.

Equation 5 is expanded to be

uupx (r, ω)

=−
∫
m.s.

[τzx(r′, ω)G0xx(r′, r, ω) + τzz(r′, ω)G0zx(r′, r, ω)

− ux(r′, ω)Σ0zxx(r′, r, ω)− uz(r′, ω)Σ0zzx(r′, r, ω)]dx′,
uupz (r, ω)

=−
∫
m.s.

[τzx(r′, ω)G0xz(r′, r, ω) + τzz(r′, ω)G0zz(r′, r, ω)

− ux(r′, ω)Σ0zxz(r′, r, ω)− uz(r′, ω)Σ0zzz(r′, r, ω)]dx′.

(7)

With reciprocity,

G0ij(r′, r, ω) = G0ji(r, r′, ω),
Σ0ijk(r′, r, ω) = λ0∂i′G0ki(r, r′, ω)δij + µ0(∂i′G0kj(r, r′, ω) + ∂j′G0ki(r, r′, ω)),

i, j, k = x, z.

(8)

By applying a Fourier transform over x in Equation 7 with
∫
e−ikxxdx, we will have

ũupx (kx, z, ω)

=− [τ̃zx(kx, z′, ω)G̃0xx(kx, z, z′, ω) + τ̃zz(kx, z′, ω)G̃0xz(kx, z, z′, ω)

− ũx(kx, z′, ω)Σ̃0zxx(kx, z′, z, ω)− ũz(kx, z′, ω)Σ̃0zzx(kx, z′, z, ω)]|z′=εg ,
ũupz (kx, z, ω)

=− [τ̃zx(kx, z′, ω)G̃0zx(kx, z, z′, ω) + τ̃zz(kx, z′, ω)G̃0zz(kx, z, z′, ω)

− ũx(kx, z′, ω)Σ̃0zxz(kx, z′, z, ω)− ũz(kx, z′, ω)Σ̃0zzz(kx, z′, z, ω)]|z′=εg ,

(9)

where tildes represent the terms in the kx domain, and z′ is evaluated at the receiver’s depth εg.
Specifically,

Σ̃0zxx(kx, z′, z, ω) = µ0[∂z′G̃0xx(kx, z, z′, ω)− ikxG̃0xz(kx, z, z′, ω)],

Σ̃0zzx(kx, z′, z, ω) = γ0∂z′G̃0xz(kx, z, z′, ω)− λ0(ikx)G̃0xx(kx, z, z′, ω),

Σ̃0zxz(kx, z′, z, ω) = µ0[∂z′G̃0zx(kx, z, z′, ω)− ikxG̃0zz(kx, z′, z, ω)],

Σ̃0zzz(kx, z′, z, ω) = γ0∂z′G̃0zz(kx, z, z′, ω)− λ0(ikx)G̃0zx(kx, z, z′, ω),

(10)
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where γ0 is the bulk modulus, and γ0 = λ0 + 2µ0.

For a reference medium that is a homogeneous elastic whole space, both the Green’s displace-
ment tensor and its stress tensor can be expressed analytically (see Appendix B for G0).

We should emphasize that by applying the algorithm in the (kx, ω) domain, we can locate the
output point r on the measurement surface and can arrange for it to become part of the volume
above that surface. Then, we are able to extract the upgoing wavefield that is a portion of the actual,
measured data.

4 Numerical Evaluation

Figure 4: A two-layer elastic earth model for our numerical test.

We can test the (kx, ω) domain wave-separation algorithm on a two-layer elastic earth model,
as is seen in Figure 3. A vertical force (0, Fz) is applied on the free surface, and receivers are in the
earth, at a depth of 0m. For simplicity, the space above the free surface is set to be a vacuum. The
properties of the earth are listed in Table 1. The output point r is arranged to be on the measurement
surface and is treated as part of the volume above that surface.

Layer Number P-Velocity (m/s) S-Velocity (m/s) Density (kg/m3)
1 1800 1200 1500
2 4000 2500 1800

Table 1: The parameters of the earth model in Figure 3

The trace interval is 2m, the maximum offset is 3000m, the time sampling interval is 4ms, and
the total time sampling length is 2.5s. The data of displacement u with both x and z components
are generated by using analytic forms. As can be seen in Figure 5a and Figure 5b, the data reveal a
strong Rayleigh wave and a relatively weak scattered wave. In addition, the ghosts are interfering
with the upgoing waves. Note that all these images are at the same scale.

By putting the multicomponent data into the wave-separation formula of Equation 9, we can
separate the upgoing waves with x and z components. To evaluate the accuracy of the results, we
analytically create the data consisting of only the up waves, with the model of Figure 3. These data
will serve as criteria for examining the calculation results. The x component of separated upgoing
waves from the Green’s theorem wave-separation algorithm (Figure 6a) is compared with the x
component of upgoing waves created with the analytic form of Green’s function (Figure 6b), and
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Figure 5: The data for the total wavefields in displacement space, by using the earth model as Figure
3. (a) The x-component total wave ux, and (b) the z-component total wave uz .
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Figure 6: X-component wave-separation results. (a) The x-component separated upgoing wave; (b)
the x-component upgoing wave created with the analytic form of Green’s function.
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Figure 7: Z-component wave-separation results. (a) The z-component separated upgoing wave; (b)
the z-component upgoing wave created with the analytic form of Green’s function.

the comparison shows that both sets of amplitudes and phases match very well. The conclusion
is the same for the comparison of z components (see Figure 7a and Figure 7b). As the results in
Figure 6a and Figure 7a show, both the Rayleigh waves and ghosts are extinguished, and the upgoing
reflection data are not harmed.

5 Selection of the reference medium

As we described in the introduction, we have two strategies with which we can remove the reference
waves (including the direct wave and the surface wave) and the ghosts. One approach is arranging to
remove the direct wave, surface wave and the ghosts at the same time by choosing a homogeneous
elastic whole space as the reference medium. The other strategy is to first remove the reference
waves by choosing a two-half-space reference medium that is a half-space of homogeneous air over
a half-space of homogeneous elastic earth, and then to deghost with the reference medium being a
whole space of homogeneous elastic earth. Conceptually, either approach is applicable; however,
based on our present study, the Green’s function is complicated for a discontinuous medium, espe-
cially in a situation in which both the source and receiver points of Green’s function are close to the
air-elastic boundary/free surface. Practically, the wave-separation formula with such a complicated
Green’s function may produce an unstable result. We are working to address this issue. For that
reason, if our objective is only obtaining the upgoing reflection data, we can select the first strategy,
which uses a Green’s function that has a simpler analytic form. That strategy provides a stable and
useful approach for onshore preprocessing of onshore data.
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6 Conclusion

From the theoretical derivation and numerical test that we use in this paper, the elastic Green’s
theorem-based wave-separation method in displacement space has the ability to remove both the
ground roll and the ghosts from onshore data. In addition, by choosing a homogeneous elastic whole
space as the reference medium, we can remove these two waves simultaneously. The algorithm that
we develop in this paper has two requirements: (1) both the displacement and the traction (or the
derivative of displacement) must occur along the measurement surface, and (2) the properties along
the measurement surface must be homogeneous and known .

We are interest in reducing the demands of onshore data collection and the requirement of
knowing near-surface properties, and those goals motivate the next steps in our research: (1) by al-
tering the Green’s function in the algorithm with a Dirichlet boundary condition, we hope to reduce
the requirement of traction; and (2) by pursuing an alternative approach for these wave-separation
objectives we seek to remove the requirement of knowing the properties along the measurement
surface.
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Appendix

8 Derivation of the Elastic Green’s theorem wave separation algorithm in the dis-
placement space

Following Pao and Varatharajulu (1976), and with some modification, we go through the derivation
of elastic Green’s theorem wave separation method in (x, ω) domain.

We choose u(r′, ω) to represent the displacement at r′ in the actual medium (with ρ(r′), λ(r′),
and µ(r′)), and choose G0(r′, r, ω) to represent the Green’s displacement at r′ by source at r in the
reference medium (with ρ0(r′), λ0(r′), and µ0(r′)).

G0(r′, r, ω) satisfies

∇′ ·Σ0(r′, r, ω) + ρ0(r′)ω2G0(r′, r, ω) = δ(r′ − r) I, (A-1)

where,

Σ0ijk(r′, r, ω) = λ0(r′)∂m′G0mk(r′, r, ω)δij+µ0(r′)(∂i′G0jk(r′, r, ω)+∂j′G0ik(r′, r, ω)). i, j, k = x, z
(A-2)

u(r′, ω) satisfies
∇′ · τ (r′, ω) + ρ(r′)ω2u(r′, ω) = f(r′, ω), (A-3)

where,
τ (r′, ω) = λ(r′)∇′ · u(r′, ω) I + µ(r′)

(∇′u(r′, ω) + u(r′, ω)∇′) . (A-4)

To make the parameters of left side of Equation 7 be consistent with that of Equation 5, we rewrite
Equation 7 as

∇′ · τ1(r′, ω) + ρ0(r′)ω2u(r′, ω) = f(r′, ω)− (ρ(r′)− ρ0(r′))ω2u(r′, ω)
−∇′ · [(λ(r′)− λ0(r′))∇′ · u(r′, ω) I + (µ(r′)− µ0(r′))(∇′u(r′, ω) + u(r′, ω)∇′)], (A-5)

and
τ1(r′, ω) = λ0(r′)∇′ · u(r′, ω) I + µ0(r′)(∇′u(r′, ω) + u(r′, ω)∇′). (A-6)

Now we rename τ1 as τ , rename f− (ρ−ρ0)ω2u−∇′ · [(λ−λ0)∇′ ·u I+(µ−µ0)(∇′u+u∇′)] as
f, and then f becomes a generalized source, including both the active source and the passive source
by earth perturbation. Equation 10 and Equation 11 change to be

∇′ · τ (r′, ω) + ρ0(r′)ω2u(r′, ω) = f(r′, ω), (A-7)

and
τ (r′, ω) = λ0(r′)∇′ · u(r′, ω) I + µ0(r′)(∇′u(r′, ω) + u(r′, ω)∇′). (A-8)

Multiplying Equation 12 with G0(r′, r, ω), multiplying Equation 5 with u(r′, ω), and then a sub-
traction between them will produce

∇′ · τ (r′, ω) ·G0(r′, r, ω)− u(r′, ω) · ∇′ ·Σ0(r′, r, ω) = f(r′, ω) ·G0(r′, r, ω)− u(r′, ω)δ(r′ − r).
(A-9)

Using the relationships that

∇′ · (τ ·G0) = (∇′ · τ ) ·G0 + τ : ∇′G0,

∇′ · (u ·Σ0) = (∇′ · u) ·Σ0 + u : ∇′Σ0,
(A-10)
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and
τ : ∇′G0 − u : ∇′Σ0 = 0, (A-11)

we have

∇′·(τ (r′, ω)·G0(r′, r, ω)−u(r′, ω)·Σ0(r′, r, ω)) = f(r′, ω)·G0(r′, r, ω)−u(r′, ω)δ(r′−r). (A-12)

Figure A-1: A schemetic plot indicating that surface integral along the dash line will extract the
contribution from f1 to r

Considering Figure A-1, there are two sources acting on the reference medium, f1 and f2, and
f = (f1 + f2).

From Lippmann–Schwinger equation, the wavefield at r can be expressed as

u(r, ω) =
∫
∞

f(r′, ω) ·G0(r′, r, ω)dr′

=
∫
∞−V

f1(r′, ω) ·G0(r′, r, ω)dr′ +
∫
V

f2(r′, ω) ·G0(r′, r, ω)dr′,
(A-13)

for a causal Green’s Function of the reference medium, and r is inside V.

On the other hand, if we put a close surface marked with dashed blue line, and integrate over
the volume V on both side of Equation 16, the application of Green’s Second Identity will result in∫

V
∇′ · [τ (r′, ω) ·G0(r′, r, ω)− u(r′, ω) ·Σ0(r′, r, ω)]dr′

=
∫
m.s.

[(n̂′ · τ (r′, ω)) ·G0(r′, r, ω)− u(r′, ω) · (n̂′ ·Σ0(r′, r, ω))]dr′

=
∫
V

f2(r′, ω) ·G0(r′, r, ω)dr′ − u(r, ω),

(A-14)

where, n̂′ is the outside normal direction along the measurement surface (M.S.). Then,

u(r, ω) =
∫
V

f2(r′, ω) ·G0(r′, r, ω)dr′

−
∫
m.s.

[(n̂′ · τ (r′, ω)) ·G0(r′, r, ω)− u(r′, ω) · (n̂′ ·Σ0(r′, r, ω))]dr′.
(A-15)
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Comparing Equation 17 with Equation 19, and choosing the Green’s Function G0 in Equation
19 to be causal, it’s evident that the surface integral is corresponding to the contribution from the
source f1 that is outside the volume; i.e.,

−
∫
m.s.

[(n̂′ · τ (r′, ω)) ·G0(r′, r, ω)− u(r′, ω) · (n̂′ ·Σ0(r′, r, ω))]dr′

=
∫
∞−V

f1(r′, ω) ·G0(r′, r, ω)dr′.
(A-16)

The important physical meaning existing in this equation is the basis of wave separation method in
the paper.

9 Derivation of the Analytic Form of the Green’s Function

For a whole-space homogeneous medium, we can express the impulse response in both displace-
ment and PS spaces (Weglein and Stolt, 1995; Zhang, 2006) with

L0G0 = δ,

L̂0Ĝ0 = δ,
(A-17)

where L0 is the differential operator in displacement space representing the property of the medium,
and L̂0 is the differential operator in PS space. The Green’s function operators G0 and Ĝ0 have the
relationship of

G0 = Γ−1
0 Π−1Ĝ0Π, (A-18)

where Π =
(

∂x ∂z
−∂z ∂x

)
, Γ0 =

(
γ0

µ0

)
, and Ĝ0 =

(
ĜP0

ĜS0

)
. In PS space, the

Green’s function only has the direct wave components, direct P wave and direct S wave.

In (r, ω) domain, Ĝ0(r′ , r, ω) can be expressed as

Ĝ0(r
′
, r, ω) =

(
ĜP0 (r′ , r, ω) 0

0 ĜS0 (r′ , r, ω)

)

=
1

2π

∫
eikx(x′−x)dkx

(
eiν0|z

′−z|
2iν0

0

0 eiη0|z
′−z|

2iη0

)
,

(A-19)

where

ν0 =
{ √

k2
α0
− k2

x if kx < kα0

i
√
k2
x − k2

α0
if kx > kα0

kα0 = ω
α0

,

η0 =


√
k2
β0
− k2

x if kx < kβ0

i
√
k2
x − k2

β0
if kx > kβ0

kβ0 = ω
β0

,

and α0 and β0 are the P-wave velocity and the S-wave velocity of the whole space homogeneous
elastic medium, respectively.
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With the relationship Equation A-18 and the analytic form of Ĝ0(r′ , r, ω) in Equation A-19, the
analytic form of G0(r′ , r, ω) can be derived,

G0(r
′
, r, ω)

=− 1
ρ0ω2

ΠT Ĝ0(r
′
, r, ω)ΠδI

=− 1
ρ0ω2

∫ (
∂x′ −∂z′
∂z′ ∂x′

)(
ĜP0 (r′ , r, ω) 0

0 ĜS0 (r′ , r, ω)

)(
∂x′′ ∂z′′

−∂z′′ ∂x′′

)(
δ(r′′ − r) 0

0 δ(r′′ − r)

)
dr′′

=
1

ρ0ω2

(
∂x′ −∂z′
∂z′ ∂x′

)(
ĜP0 (r′ , r, ω) 0

0 ĜS0 (r′ , r, ω)

)(
∂x ∂z
−∂z ∂x

)

=
1

ρ0ω2

1
2π

∫ (
∂x′ −∂z′
∂z′ ∂x′

)(
∂x ∂z
−∂z ∂x

)( eiν0|z
′−z|

2iν0
0

0 eiη0|z
′−z|

2iη0

)
eikx(x′−x)dkx

=
1

2π

∫ (
G̃xx(kx, z′, z, ω) G̃xz(kx, z′, z, ω)
G̃zx(kx, z′, z, ω) G̃zz(kx, z′, z, ω)

)
eikx(x′−x)dkx,

(A-20)
where

G̃xx(kx, z′, z, ω) =
1

ρ0ω2

(
k2
x

eiν0|z′−z|

2iν0
+ η2

0

eiη0|z′−z|

2iη0

)
,

G̃xz(kx, z′, z, ω) =
1

ρ0ω2

(
kxν0sgn(z′ − z)e

iν0|z′−z|

2iν0
− kxη0sgn(z′ − z)e

iη0|z′−z|

2iη0

)
,

G̃zx(kx, z′, z, ω) =
1

ρ0ω2

(
kxν0sgn(z′ − z)e

iν0|z′−z|

2iν0
− kxη0sgn(z′ − z)e

iη0|z′−z|

2iη0

)
,

G̃zz(kx, z′, z, ω) =
1

ρ0ω2

(
ν2

0

eiν0|z′−z|

2iν0
+ k2

x

eiη0|z′−z|

2iη0

)
.

(A-21)

After deriving the analytic form of Green’s function in displacement space, we can further obtain
the analytic expression for the stress of Green’s function via Equation 10.
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Preprocessing in displacement space for on-shore seismic processing: removing ground roll and ghosts
without damaging the reflection data
Jing Wu and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

This paper derives an elastic Green’s theorem wave separation
method for on-shore data in displacement space. Applying the
algorithm presented in this paper only once, both the reference
waves (including the direct wave and the surface wave) and the
ghosts can be effectively removed. The method is tested on a
layered elastic earth model. The results indicate its effective-
ness for reducing the ground roll and ghosts at the same time,
and without harming the up-going reflections, in preparation
for on-shore processing.

INTRODUCTION

On-shore seismic exploration and processing seeks to use re-
flection data (the scattered wavefield) to make inferences about
the subsurface. The measured total wavefield consists of the
reflection data and the reference wave that contains the direct
wave and the surface wave/ground roll; hence, one prerequisite
is to separate the reference wave and scattered wave. Filtering
methods are typically employed to remove the reference wave,
particularly the ground roll. That can be at the expense of dam-
aging reflection data when ground roll is interfering with the
scattered wavefield.

In addition, for buried sources and receivers, not only up-going
waves are in the reflection data but also ghosts, whose exis-
tence can cause notches in the spectrum. Thus, removing the
ghosts from the reflection data is another prerequisite. In this
study, we will assume the source is located slightly above the
air/earth surface (could be infinitely close, or on the air/earth
surface), and the receivers are slightly beneath the air/earth sur-
face. Therefore, there are receiver ghosts but no source ghosts
in our study.

As a flexible and useful tool, Green’s theorem provides a method
to satisfy both prerequisites; i.e., removing the reference wave
without damaging the reflection data and removing the ghosts
from the reflection data without destroying the up-going re-
flected data. The distinct advantages of applying the method
based on Green’s theorem in off-shore plays have been demon-
strated by Weglein et al. (2002); Zhang (2007); Mayhan et al.
(2011); Mayhan and Weglein (2013); Tang et al. (2013); Yang
et al. (2013).

Basically, wave separation from Green’s theorem has a model
of the world that consists of the reference medium and the
sources. The choice of reference medium is arbitrary, and the
choice of reference will determine what the sources have to
be to arrange for the reference medium and sources together
to correspond to the actual medium and experiment (Weglein
et al., 2003). For on-shore plays, Green’s theorem wave sep-
aration method is applicable for data either in displacement

space (Pao and Varatharajulu, 1976; Weglein and Secrest, 1990)
or in the PS space (Wu and Weglein, 2014). In this paper, for
data in displacement space, we choose a homogeneous elastic
whole space as the reference, then both the reference wave and
receiver ghosts can be removed in one step while applying the
elastic Green’s theorem wave separation algorithm. In a com-
panion paper (Wu and Weglein, 2015b), and for data in the
PS space, the reference medium is chosen to be composed of
two homogenous half-spaces, an air/acoustic half-space over
an elastic half-space, then Green’s theorem method can ex-
tinguish the reference wave (including the ground roll) with-
out harming the reflection data. After obtaining the reflection
data, Green’s theorem provides a reflection data deghosting al-
gorithm with a choice of a whole-space homogenous elastic
reference (Wu and Weglein, 2015b).

DESCRIPTION OF THE MODEL: REFERENCE MEDIUM
+ SOURCES

As shown in Figure 1, the model consists of an air half-space
and an elastic-earth half-space. Receivers are buried in the
earth, and the active source in the form of a vertical force is
applied on the free surface (F.S.). Therefore, ghosts exist at
the receiver side only. The measurement surface (M.S.) can be
infinitely close to the free surface, like on-surface acquisition,
or several meters below the free surface, like buried-receiver
acquisition; however, the receivers are coupled with the elastic
medium in both situations.

Figure 1: A generic model describing the land experiment

In this paper, we will assume that the portion of earth along
the measurement surface is homogeneous and known. Within
this assumption, we choose the reference medium to be a ho-
mogenous elastic whole space, as shown in Figure 2, whose
property agrees with the actual earth along the measurement
surface.

There are three sources acting on the homogeneous reference
medium that is described in Figure 2. As shown in Figure 3,
one is the active source (or the vertical force S1) and the other
two are passive sources (or the perturbations S2 and S3) on two
sides of the measurement surface, respectively. S1 produces
the direct waves. S2 produces the ground roll; it also produces
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Figure 2: A homogeneous elastic whole-space reference
medium

Figure 3: Three sources are acting on the reference medium
that is depicted in Figure 2, and surface integral along the mea-
surement surface will move out the contribution from S1 and
S2 inside the enclosed the surface.

the ghosts by transferring the up-going waves that are propa-
gating from the earth, to the down-going ones. S3 generates
up-going waves from the earth. All of these three sources con-
tribute to providing the actual total wavefield, and the up waves
due to S3 are expected to be separated from the waves caused
by both S1 and S2.

ELASTIC GREEN’S THEOREM WAVE SEPARATION
THEORY

Background of 2D elastic wave theory

The wave equation for a 2D elastic isotropic medium is

∇ · τ(r,ω)+ρω2u(r,ω) = f(r,ω), (1)

where:
τ = λ∇ ·u I+ µ (∇u+u∇) . (2)

u =
(

ux
uz

)
is the displacement, the 2nd order tensor τ =(

τxx τxz
τzx τzz

)
is the stress, f =

(
fx
fz

)
is the source, λ and

µ are Lamé′s parameters, and ρ is the density.

The impulse response of the reference medium can be written
as

∇ ·Σ0(r,ω)+ρ0ω2G0(r,ω) = δ (r) I, (3)

where:

Σ0i jk = λ0∂mG0mkδi j + µ0(∂iG0 jk +∂ jG0ik), i, j,k = x,z.
(4)

The 2nd order tensor G0 =
(

G0xx G0xz
G0zx G0zz

)
is the Green’s

displacement tensor, the 3rd order tensor Σ0 is the Green’s
stress tensor, and the source term consists of a diagonal ma-
trix.

Elastic Green’s theorem wave separation algorithm in
(x,ω) domain

As seen in Figure 3, applying Green’s theorem, the integral,
that is along the closed semi-infinite surface lower bounded
by the measurement surface, will separate the portion of the
wavefield that is inside the enclosed volume due to S3 that is
outside the volume.

Starting from Equation 1 and Equation 3, and using the Green’s
theorem, we can obtain the wave separation algorithm (see Wu
and Weglein (2015a) for the detailed derivation); i.e., we can
extract the up-going waves generated by the source S3.

In (x,ω) domain, the formula is

uup(r,ω)

=−
∫

m.s.
[(n̂′ · τ(r′,ω)) ·G0(r′,r,ω)−u(r′,ω) · (n̂′ ·Σ0(r′,r,ω))]dr′,

(5)
where n̂′ is the normal outside vector along the surface.

On the measurement surface, r′ = (x′,z′ = εg),

τ(x′,z′ = εg,ω) =λ0∇′ ·u(x′,z′ = εg,ω) I
+µ0(∇′u(x′,z′ = εg,ω)+u(x′,z′ = εg,ω)∇′),

(6)
where εg is the receiver’s depth. Since the properties along the
measurement surface have been assumed to be homogeneous
in the paper, λ0 and µ0 are constants along the measurement
surface. The choice of the reference medium depends on these
invariant parameters.

Applying Equation 5 in the (x,ω) domain, we can remove the
reference wave (particularly the ground roll) and the ghosts
simultaneously. There is no assumption about the shape of the
measurement surface; i.e., it can be either flat or rugose.

Elastic Green’s theorem wave separation algorithm in
(kx,ω) Domain

If the measurement surface is horizontal and flat, then n̂′ =
(0,1). Equation 5 can be Fourier transformed to (kx,ω) do-
main.

Equation 5 is expanded to be

uup
x (r,ω)

=−
∫

m.s.
[τzx(r′,ω)G0xx(r′,r,ω)+ τzz(r′,ω)G0zx(r′,r,ω)

−ux(r′,ω)Σ0zxx(r′,r,ω)−uz(r′,ω)Σ0zzx(r′,r,ω)]dx′,
uup

z (r,ω)

=−
∫

m.s.
[τzx(r′,ω)G0xz(r′,r,ω)+ τzz(r′,ω)G0zz(r′,r,ω)

−ux(r′,ω)Σ0zxz(r′,r,ω)−uz(r′,ω)Σ0zzz(r′,r,ω)]dx′.
(7)
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With reciprocity,

G0i j(r′,r,ω) = G0 ji(r,r′,ω), i, j,k = x,z. (8)

Applying Fourier transform over x in Equation 7 with
∫

e−ikxxdx,
it will become

ũup
x (kx,z,ω)

=−[τ̃zx(kx,z′,ω)G̃0xx(kx,z,z′,ω)+ τ̃zz(kx,z′,ω)G̃0xz(kx,z,z′,ω)

− ũx(kx,z′,ω)Σ̃0zxx(kx,z′,z,ω)− ũz(kx,z′,ω)Σ̃0zzx(kx,z′,z,ω)]|z′=εg ,

ũup
z (kx,z,ω)

=−[τ̃zx(kx,z′,ω)G̃0zx(kx,z,z′,ω)+ τ̃zz(kx,z′,ω)G̃0zz(kx,z,z′,ω)

− ũx(kx,z′,ω)Σ̃0zxz(kx,z′,z,ω)− ũz(kx,z′,ω)Σ̃0zzz(kx,z′,z,ω)]|z′=εg ,
(9)

where tildes represent the terms in kx domain, and z′ is evalu-
ated at the receiver’s depth εg. Specifically,

Σ̃0zxx(kx,z′,z,ω)

=µ0[∂z′ G̃0xx(kx,z,z′,ω)− ikxG̃0xz(kx,z,z′,ω)],

Σ̃0zzx(kx,z′,z,ω)

=γ0∂z′ G̃0xz(kx,z,z′,ω)−λ0(ikx)G̃0xx(kx,z,z′,ω),

Σ̃0zxz(kx,z′,z,ω)

=µ0[∂z′ G̃0zx(kx,z,z′,ω)− ikxG̃0zz(kx,z′,z,ω)],

Σ̃0zzz(kx,z′,z,ω)

=γ0∂z′ G̃0zz(kx,z,z′,ω)−λ0(ikx)G̃0zx(kx,z,z′,ω),

(10)

where γ0 is the bulk modulus, and γ0 = λ0 +2µ0.

For a reference medium as homogenous elastic whole space,
both the Green’s displacement tensor and its stress tensor can
be expressed analytically (see appendix A for G0).

It is deserving emphasis that applying the algorithm in (kx,ω)
domain, we can locate the output point r on the measurement
surface to be part of the volume above, to extract the the up-
going wavefield that is portion of the actually measured data.

NUMERICAL EVALUATION

We test the (kx,ω) domain wave separation algorithm on a two
layered elastic earth model, as seen in Figure 4. A vertical
force (0,Fz) is applied on the free surface, and receivers are
buried at depth 30m. For simplicity, the space above the free
surface is set to be vacuum. The properties of the earth are
listed in Table 1. The output point r is arranged to be on the
measurement surface and treated as part of the volume above.

Figure 4: A two layered elastic earth model for numeric test

Layer’s
Number

P Veloc-
ity (m/s)

S Veloc-
ity (m/s)

Density
(kg/m3)

1 1800 1200 1500
2 4000 2500 1800

Table 1: The parameters of the earth model in Figure 4

The trace interval is 2m, the maximum offset is 3000m, the
time sampling interval is 4ms, and the total time sampling
length is 3s. Then the data of displacement u with both x and
z components are generated using analytic forms. As shown
in Figure 5(a) and Figure 5(d), the data have strong Rayleigh
wave and relatively weak scattered wave. Besides, the ghosts
are interfering with the up-going waves. All the figures are in
the same scales.

Putting the multicomponent data into the wave separation for-
mula of Equation 9, the up-going waves can be separated, with
x and z components. To evaluate the accuracy of the results,
we analytically create the data consisting of only the up waves,
with the given model of Figure 4. These data will play as
criteria to examine the calculation results. The x component
of separated up waves from Green’s theorem separation algo-
rithm (Figure 5(b)) is compared with the x component created
up waves with analytic form (Figure 5(c)), and the comparison
shows that both their amplitudes and phases match very well.
The conclusion is the same for the comparison of z compo-
nents (see Figure 5(e) and Figure 5(f)). As the results shown in
Figure 5, both the Rayleigh waves and ghosts are extinguished,
and there is no harm to the up-going reflection data.

DISCUSSION OF SELECTING THE REFERENCE MEDIUM

As described in the introduction, we have two strategies to re-
move the reference waves (including the direct wave and the
surface wave) and the ghosts. One is removing both of them at
the same time by choosing a homogenous elastic whole space
as the reference medium. The other is first removing the ref-
erence waves by choosing a two-half-space reference medium
that is a half-space of homogenous air over a half-space of
homogenous elastic earth, then deghosting with the reference
medium to be a whole space of homogeneous elastic. Con-
ceptually, it’s applicable either way; however, based on our
present study, the Green’s function in displacement space is
complicated for a discontinuous medium, especially for the sit-
uation that both the source and receiver points of Green’s func-
tion are close to the air-elastic boundary/free surface. Practi-
cally, the wave separation formula with such a complicated
Green’s function may produce an unstable result. That’s the
reason why we select the first strategy that uses a Green’s func-
tion with a simpler analytic form. That strategy provides a
stable and useful approach for on-shore preprocessing in dis-
placement space.
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(a) ux

(b) uup sep
x

(c) uup syn
x

(d) uz

(e) uup sep
z

(f) uup syn
z

Figure 5: Wave separation results. (a) is x component total
wave; (b) is the x component separated up wave; (c) is the x
component created up wave with analytic form; (d) is z com-
ponent total wave; (e) is the z component separated up wave;
(f) is the z component created up wave with analytic form.

.

CONCLUSION

From the theoretic derivation and numeric test in this paper, the
elastic Green’s theorem based wave separation method in dis-
placement space has the potential to remove both the ground
roll and the ghosts from on-shore data. In addition, by choos-
ing a homogenous elastic whole space as reference, we can re-
move these two waves simultaneously. The algorithm that we
develop in this paper has two requirements: (1) both the dis-
placement and the traction (or the derivative of displacement)
along the measurement surface; and (2) the homogeneous and
known properties along the measurement surface. Our inter-
est in reducing the demanding on-shore data collection and

requiring near surface properties motivates the next steps in
our research: (1) altering the Green’s function with a Dirich-
let boundary condition to reduce the requirement of traction;
(2) pursuing an alternative approach for these wave separation
objectives without the requirement of known properties along
the measurement surface.
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APPENDIX A: ANALYTIC FORM OF THE GREEN’S
FUNCTION

For a whole space homogeneous elastic medium, the Green’s
function in displacement space can be expressed analytically
as

G0(r′,r,ω)

=
1

2π

∫ (
G̃xx(kx,z′,z,ω) G̃xz(kx,z′,z,ω)
G̃zx(kx,z′,z,ω) G̃zz(kx,z′,z,ω)

)
eikx(x′−x)dkx,

(A-1)
where

G̃xx(kx,z′,z,ω)

=
1

ρ0ω2

(
k2

x
eiν0|z′−z|

2iν0
+η2

0
eiη0|z′−z|

2iη0

)
,

G̃xz(kx,z′,z,ω)

=
1

ρ0ω2

(
kxν0sgn(z′− z)

eiν0|z′−z|

2iν0
− kxη0sgn(z′− z)

eiη0|z′−z|

2iη0

)
,

G̃zx(kx,z′,z,ω)

=
1

ρ0ω2

(
kxν0sgn(z′− z)

eiν0|z′−z|

2iν0
− kxη0sgn(z′− z)

eiη0|z′−z|

2iη0

)
,

G̃zz(kx,z′,z,ω)

=
1

ρ0ω2

(
ν2

0
eiν0|z′−z|

2iν0
+ k2

x
eiη0|z′−z|

2iη0

)
,

(A-2)
and

ν0 =


√

k2
α0 − k2

x if kx < kα0

i
√

k2
x − k2

α0 if kx > kα0

kα0 = ω
α0

,

η0 =


√

k2
β0
− k2

x if kx < kβ0

i
√

k2
x − k2

β0
if kx > kβ0

kβ0
= ω

β0
.

α0 and β0 are P wave velocity and S wave velocity in the
medium, respectively.
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(Short note) Back scattering artifacts in Reverse Time Migration
(RTM)

Qiang Fu and Arthur B. Weglein

1 Introduction

Recently, reverse time migration (RTM) has been widely used in seismic exploration, especially in
an area with complex geology, because it shows advantages over other imaging methods in handling
complicated structures. Usually it is considered that reverse time migration utilizes the second of
three imaging conditions proposed by Claerbout, Lowenthal and their colleagues in the 1970s and
1980’s (Claerbout, 1971; Riley and Claerbout, 1976; Lowenthal et al., 1985), which we refer to as
Claerbout Imaging Condition II. In fact the imaging condition used in RTM implementation is not
exactly the Claerbout Imaging Condition II. The difference between the proposed form of Claerbout
imaging condition II and the actual implementation in RTM will cause strong high amplitude and
low wavenumber artifacts (which are well known in the exploration geophysics community as RTM
back scattering artifacts). In this short note we will show how RTM back scattering artifacts are
generated and what methods are usually used to address this issue.

2 Claerbout Imaging Condition II, imaging condition used in RTM implementation
and RTM back scattering artifacts

Methods that use the wave equation to perform seismic migration have two ingredients: (1) a wave
propagation component and (2) an imaging principle or concept. Claerbout (Claerbout, 1971; Riley
and Claerbout, 1976) was the initial and key wave-equation-migration imaging-concept pioneer and
algorithm developer; together with Stolt (Stolt, 1978) and Lowenthal (Lowenthal et al., 1985) and
their colleagues, they introduced imaging conditions for locating reflectors at depth from surface-
recorded data. The three Claerbout imaging conditions that were introduced are:
I. the exploding-reflector model
II. time and space coincidence of up and down-going waves
III. predicting a source and receiver experiment at a coincident-source-and-receiver subsurface
point, and asking for time equals zero.

Usually it is considered that reverse time migration utilizes the Claerbout Imaging Condition II.
The reason for this thinking is that the imaging condition in RTM is the time and space coincidence
of source wave-field and receiver wave-field which looks similar to Claerbout Imaging Condition
II (which is time and space coincidence of up and down-going waves). However, the actual source
and receiver wave-fields may not contain only unidirectional (up-going or down-going) waves. If
the velocity model in RTM contains sharp velocity contrasts (e.g., at the top or bottom boundary
of a salt body), there will be reflection energy (back scattering) in both source and receiver wave-
fields. Then both the source and receiver wave-fields are not unidirectional. The non-unidirectional
parts in both wave-fields will cause high amplitude and low wavenumber (continuous) RTM back
scattering artifacts.
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Using a smooth velocity (and density) migration model may relieve this issue. However, the
smooth model will cause inaccuracy in imaging reflectors beneath the smoothed area. Furthermore,
for strong contrasts in the model (e.g., at the boundary of a salt body), smoothing the model is
usually not enough to fully avoid RTM back scattering artifacts.

Because Claerbout Imaging Condition III uses predicted experiments with source and receiver
locations at the imaging point and never requires coincidence of two different wave-fields, there are
no similar artifacts in imaging using Claerbout Imaging Condition III.

3 Usual methods to remove RTM back scattering artifacts

Now that we know the cause of the back scattering artifacts, let’s look at how to remove them. There
are two categories for the methods attempting to remove RTM back scattering artifacts:
1. restore unidirectional property of source and receiver wave-fields (which is required in Claerbout
imaging condition II)
2. directly remove the RTM back scattering artifacts in the image by utilizing their low wavenumber
characteristic.

For the first category, the method works by first decomposing the source and receiver wave-fields
to their one-way propagation components, followed by applying a correlation-based imaging con-
dition to the appropriate combinations of the decomposed wave-fields (Liu et al., 2011; Whitmore
and Crawley, 2012; Yoon and Marfurt, 2006).

For the second category, the method uses image processing techniques to remove the low
wavenumber components of the image (Zhang and Sun, 2009).

4 A toy example to show RTM back scattering artifacts

Here we use a toy example to show RTM back scattering artifacts generated by the imaging con-
dition used in RTM. We use a two-layer 1.5D medium (consisted of a whole space homogeneous
velocity model and two-half-space density model and conventional RTM implementation in this toy
example.

Figure 1 shows the velocity and density models used in this example. The left panel is a whole
space homogeneous velocity model (the velocity is 2000m/s) and the right panel is two-half spaces
density model (with density equals 2 and 1 for lower and upper half-space respectively). Figure 2
shows the acquisition geometry used in this example. The shot point is in the middle of the survey
line (at depth=0m) and the maximum offset is about 12000m with offset increment of 20m, so there
are about 1200 receivers in the survey line. The thick rectangle in the center of the figure indicates
the imaging area. Figure 3 shows the synthetic data used in this example. Left panel is the whole
data, and right panel is the data after removing the direct arrival. Both are shot gathers.

For simplicity, we first show the images using one trace (offset=3800m) to get the image. Figure
4 shows the RTM image achieved from one trace. We can see strong back scattering artifacts (in
the rabbit ears shape). Figure 5 shows the image by the wave-field separation method propose by
Liu et al. (2011). The back scattering artifacts are removed except in the vicinity of the source and
receiver locations. We will see that the residual artifacts in the vicinity of the source and receiver
locations can be removed by summing images from difference traces.
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Figure 1: The velocity and density models used in this example. The left panel is a whole space
homogeneous velocity model (the velocity is 2000m/s) and the right panel is two-half spaces density
model (with density equals 2 and 1 for lower and upper half-space respectively).

Figure 2: The acquisition geometry used in this example. The shot point is in the middle of the
survey line (at depth=0m) and the maximum offset is about 12000m with offset increment of 20m,
so there are about 1200 receivers in the survey line. The thick rectangle in the center of the figure
shows the imaging area.
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Figure 3: The synthetic data used in this example. Left panel is the whole data, and right panel is
the data after removing the direct arrival. Both are shot gathers.

Figure 4: The RTM image achieved from one trace. We can see strong back scattering artifacts (in
the rabbit ears shape).
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Figure 5: The image by wave-field separation method propose by Liu et al. (2011). The back
scattering artifacts are removed except in the vicinity of the source and receiver locations.

Next we show the images using the whole shot gather.

Figures 6 and 7 show the raw RTM image and the image after field separation method respec-
tively. The back scattering artifacts are removed except in the vicinity of the source location. The
residual artifacts in the vicinity of the receiver locations in Figure 5 are removed by the cancellation
effects in summing all traces within a shot gather. In a similar way, if we add all images from all
shot gathers to get the image from the whole survey line, the residual artifact in the vicinity of the
shot location in Figure 7 is also removed.

5 Summary

In this short note we have shown a toy example to demostrat the imaging condition used in RTM
implementations is not exactly the Claerbout Imaging Condition II. The missing requirement of
unidirectional (only up-going or only down-going) waves in Claerbout Imaging Condition II causes
RTM back scattering artifacts. There are two categories of methods to remove the RTM back scat-
tering artifacts: 1. restore unidirectional property of source and receiver wave-fields; 2. directly
remove the RTM back scattering artifacts in the image by utilizing their low wavenumber charac-
teristic. And Claerbout imaging condition III will not suffer the similar artifact issue.
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Figure 6: The RTM image achieved from a whole shot gather

Figure 7: The image by the wave-field separation method proposed by Liu et al. (2011). The back
scattering artifacts are removed except in the vicinity of the source location.
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Comparison of the amplitude properties of two important imaging
conditions: 1 the space-time coincidence of up and down waves, and 2
the predicted coincident source and receiver experiment at depth at

time zero

Yanglei Zou, Qiang Fu, Chao Ma, Jing Wu, Arthur B. Weglein

Abstract

In the 1970’s Claerbout, Lowenthal and their colleagues (Claerbout, 1971; Riley and Claer-
bout, 1976; Lowenthal et al., 1985) introduced three imaging conditions. We refer to these as
Claerbout Imaging Condition I, II and III, respectively. For a normal incident plane wave on a
single horizontal reflector these imaging conditions are equivalent. For a shot record recorded
above a single horizontal reflector or more complicated situations they are no longer equiva-
lent. Claerbout III is superior to Claerbout I and II in that it provides the most quantitative
and interpretable image amplitude. Stolt and his colleagues (Clayton and Stolt, 1981; Stolt and
Weglein, 1985; Stolt and Benson, 1986) originally formulated Claerbout III for one-way waves.
Weglein, Fang and their colleagues (Weglein et al., 2011a,b; Liu, 2013) extended Claerbout III
for two way propagating waves. Claerbout III and Claerbout II have the same principle for both
one-way and two-way waves. Therefore, to better understand the benefits/added value that this
new Claerbout III two-way algorithm will bring to seismic exploration, we first examine the
differences between Claerbout III and Claerbout II for one-way waves. In this paper, the first
direct and detailed comparison of Claerbout III and Claerbout II is carried out for the simplest
circumstance where they will produce a different result. The differences are significant and sub-
stantive, with implications far beyond the simple example that allows for transparent analysis
and analytic evaluation and conclusions.

1 Introduction

Methods that use the wave equation to perform seismic migration have two ingredients: (1) a wave
propagation component and (2) an imaging principle or concept. Claerbout (Claerbout, 1971; Riley
and Claerbout, 1976) was the initial and key wave-equation-migration imaging-concept pioneer and
algorithm developer, together with Stolt (Stolt (1978)) and Lowenthal (Lowenthal et al. (1985)) and
their colleagues, they introduced imaging conditions for locating reflectors at depth from surface-
recorded data. The three key imaging conditions that were introduced are:

I. the exploding-reflector model
II. time and space coincidence of up and downgoing waves
III. predicting a source and receiver experiment at a coincident-source-and-receiver subsurface
point, and asking for time equals zero (the definition of wave-equation migration)

For a normal-incident spike plane wave on a horizontal reflector, these three imaging concepts
are totally equivalent. However, a key point to make clear is that for a non-zero-offset surface
seismic-data experiment, with either a one-dimensional or a multi-dimensional subsurface, they are
no longer equivalent. Wave-equation migration is defined as using the Claerbout Imaging Condition
III, predicting a source and receiver experiment at depth at time equals zero. Stolt and his colleagues
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(Clayton and Stolt, 1981; Stolt and Weglein, 1985; Stolt and Benson, 1986; Stolt and Weglein,
2012; Weglein and Stolt, 1999) extended and formulated the experiment-at-depth concept to allow
a separated source and receiver experiment at time equals zero for one way propagating waves.
Weglein, Fang and their colleagues (Weglein et al., 2011a,b; Liu, 2013) extended Claerbout III for
two way propagating waves.

Claerbout III and Claerbout II have the same principle for both one-way and two-way waves. In
order to understand the benefits that the two way wave propagation form of Claerbout III will bring
to seismic exploration, we first examine the differences between Claerbout III and other imaging
conditions for one way wave. In this paper, we first compare the imaging results of Clearbout III
- Stolt migration and its asymptotic form - Kirchhoff migration. Stolt migration is Claerbout III
for one-way waves. Kirchhoff migration is its natural approximation. Kirchhoff migration shares
some kind of behavior with RTM (Claerbout II), including producing candidate and depending on
the coherent summing over candidate. Then we compare the imaging results of Clearbout III -
Stolt migration and Clearbout II - RTM. These comparisons and results show that Claerbout III
is superior to Claerbout I and II in that it provides the most quantitative and interpretable image
amplitude. Claerbout Imaging Condition III predicts a physical experiment with both source and
receiver at depth, allowing it to provide the imaging definitiveness and physical interpretation that
other imaging conditions cannot match. Claerbout III is also extendable/generalizable to provide an
angle dependent reflection coefficient. For the purpose of determining quantitative information on
the physical meaning of the image, the clear choice is Claerbout Imaging Condition III.

2 Stolt migration (Clearbout Imaging Condition III for one way wave) and Kirch-
hoff migration (a asymptotic form of Stolt migration)

In this section we give a review of the 2D pre-stack Stolt migration and following Stolt and Weglein
(2012) derive an approximate asymptotic 2D Kirchhoff migration algorithm. The 3D expressions
are straight forward extensions.

2.1 2D Stolt migration

First, we can denote the wave field as P (xg, zg, xs, zs, t) for an experiment where a source locates
at (xs, zs) and an observation point/receiver locates at (xg, zg).

Given a 2D dataD(xg, xs, t)1 with source location (xs, zs = 0) , receiver location (xg, zg = 0),
and time t, we have

P (xg, 0, xs, 0, t) = D(xg, xs, t). (1)

One can perform a Fourier transform over all coordinates:

P (kgx, 0, ksx, 0, ω) =D(kgx, ksx, ω)

=
∫
dxg

∫
dxs

∫
dtD(xg, xs, t)ei(ksxxs−kgxxg+ωt) (2)

1In this paper, if sources and receivers are at z = 0, we use D to denote the data , otherwise we use P to denote the
data/wave field.
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One can predict the data of an experiment where the source depth is z and receiver depth is 0,

P (kgx, 0, ksx, z, ω) = D(kgx, ksx, ω)e−ikszz, (3)

where the vertical wavenumber component ksz is defined as

ksz =
ω

c

√
1− ksx

2c2

ω2
. (4)

Similarly, one can predict the data of an experiment where the source depth is z and receiver
depth is z,

P (kgx, z, ksx, z, ω) = P (kgx, 0, ksx, z, ω)eikgzz

= D(kgx, ksx, ω)ei(kgz−ksz)z, (5)

where the vertical wavenumber component kgz is

kgz = −ω
c

√
1− kgx

2c2

ω2
. (6)

If we make two inverse Fourier transform of kgx and kxs to the same x, we can predict the data of
an experiment where a source and a receiver are both at location (x, z),

P (x, z, x, z, ω) =
1

(2π)2

∫
dksxe

−iksxx
∫
dkgxe

ikgxxP (kgx, z, ksx, z, ω)

=
1

(2π)2

∫
dksxe

−i(kszz+ksxx)

∫
dkgxe

i(kgzz+kgxx)D(kgx, ksx, ω) (7)

Next, letting the time of the wave field to be zero, one can get the 2D Stolt migration image,

MStolt(x, z) =
1

2π

∫
dωe−iωtP (x, z, x, z, ω)|t=0

=
1

(2π)3

∫
dω

∫
dksxe

−i(kszz+ksxx)

∫
dkgxe

i(kgzz+kgxx)D(kgx, ksx, ω) (8)

where MStolt(x, z) is the image function 2.

2.2 2D Kirchhoff migration

Following Stolt and Weglein (2012), one can derive the Kirchhoff migration from Stolt migration.

First, rewriting the 2D Stolt migration algorithm ,i.e., equation 48 with the data in space-time
domain, one can obtain

MStolt(x, z) =
1

(2π)3

∫ ∫ ∫
dωdxgdxs

∫
dksxe

−i(kszz+ksx(x−xs))
∫
dkgxe

i(kgzz+kgx(x−xg))∫
dteiωtD(xg, xs, t) (9)

2In Stolt and Weglein (2012), the image function MStolt(x, z) has a half-integral filter. In this section we do not
include the half-integral filter.
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An asymptotic approximation can be made with the stationary phase approximation,∫
dksxe

−i(kszz+ksx(x−xs)) ' e−iωrs/c
√

2πiωz2

cr3
s

(10)

∫
dkgxe

i(kgzz+kgx(x−xg)) ' e−iωrg/c
√

2πiωz2

cr3
g

(11)

rs =
√
z2 + (x− xs)2 (12)

rg =
√
z2 + (x− xg)2 (13)

r = rs + rg (14)

One can obtain the approximate asymptotic 2D Kirchhoff migration,

MKirchhoff (x, z) =
z2

(2π)2c

∫
dxg

∫
dxs

∫
dt
D(xg, xs, t)

(rsrg)3/2

∫
dωiωeiω(t−r/c)

=
z2

(2π)2c

∫
dxg

∫
dxs

∫
dωiωe−iωr/c

D(xg, xs, ω)
(rsrg)3/2

=
z2

(2π)2c

∫
dxg

∫
dxs

∫
dωiω

∫
dte−iωtδ(t− r/c)D(xg, xs, ω)

(rsrg)3/2

=
z2

(2π)2c

∫
dxg

∫
dxs

∫
dtδ(t− r/c)

∫
dωiωe−iωt

D(xg, xs, ω)
(rsrg)3/2

= − z2

2πc

∫
dxg

∫
dxs

∫
dtδ(t− r/c)

d
dtD(xg, xs, t)

(rsrg)3/2

= − z2

2πc

∫
dxg

∫
dxs

d
dtD(xg, xs, t)|t=r/c

(rsrg)3/2
(15)

In the last 4 steps use the following Fourier transform convention,

D(xg, xs, ω) =
∫
dtD(xg, xs, t)eiωt (16)

D(xg, xs, t) =
1

2π

∫
dωD(xg, xs, ω)e−iωt (17)

and ∫
dω iωD(xg, xs, ω)e−iωt = −2π

d

dt
D(xg, xs, t). (18)

Equation 15 is the 2D Kirchhoff migration formula. It is a weighted summation of the data
along a trajectory of travel-times corresponding to ray-paths from the source to image point and
then to receiver.
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3 Analysis and numerical tests for the differences of Stolt migration and Kirchhoff
migration due to the stationary phase approximation

As we have discussed in the previous section, the differences of Stolt migration and Kirchhoff
migration are due to two stationary phase approximations, i.e., equation 10 and 11. In this section,
we analyze and test the effect due to receiver side stationary phase approximation, while the source
side effect is similar.

3.1 Receiver side stationary phase approximation

Following section 2, given a 2D data P (xg, zg, xs, zs, ω) with (xs, zs) the sources location, (xg, zg)
the receivers location and ω the frequency, we can predict the wave field P (x, z, xs, zs, ω) at (x, z)
by Stolt migration algorithm,

PStolt(x, z, xs, zs, ω) =
1

2π

∫
dxg

∫
dkgxe

i(kgz(z−zg)+kgx(x−xg))P (xg, zg, xs, zs, ω) (19)

Apply the stationary phase approximation∫
dkgxe

i(kgz(z−zg)+kgx(x−xg)) ' e−iωrg/c
√

2πiω(z − zg)2

cr3
g

,

of the receiver side, we have

PAsymptotic(x, z, xs, zs, ω) =
1

2π

∫
dxge

−iωrg/c
√

2πiω(z − zg)2

cr3
g

P (xg, zg, xs, zs, ω) (20)

PAsymptotic(x, z, xs, zs, ω) is the predicted wave field at (x, z) generated by a source at (xs, zs)
using the Kirchhoff-like asymptotic algorithm.

3.2 Numerical tests

In this test, we use the Cagniard-de Hoop method (Appendix A) to generate the synthetic data for an
acoustic one reflector model shown in figure 1. The Reflector depth zd is 2, 000m; source location
is (xs = 0m, zs = 0m); receiver depth is zg = 400m; receiver interval dx is 4m; time sampling
interval dt is 0.001s (Tmax = 5s). Velocities are 2, 000m/s and 1, 000m/s in the first and second
medium, respectively. The generated synthetic data is shown in figure 3.

Given the data P (xg, zg, xs, zs, ω) with source location (xs = 0m, zs = 0m) and receiver depth
zg = 400m , we compare the predicted wave fieldPStolt(x, z, xs, zs, ω) andPAsymptotic(x, z, xs, zs, ω)
with the exact wave field PCdH at depth z=600m (at 0m offset and 2,000m offset). In all these fol-
lowing figures, the black line is the exact data generated by using the Cagniard-de Hoop method at
depth z = 600m, the red line is the asymptotic prediction result PAsymptotic, and the blue line is
the wave-equation prediction result PStolt, respectively.

The Stolt migration algorithm prediction of the receivers at depth takes a highly nonlinear de-
pendence of the phase in equation 19 (from kgz) and the Kirchhoff-like asymptotic approximation
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Figure 1: Model to generate CdH synthetic test data as input

Figure 2: Predicted wavefield at depth 600 m
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Figure 3: CdH synthetic test data generated from the one reflector model in figure 1
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(a) (b)

Figure 4: Left: Space-time domain comparison at x=0m, z=600m, 1.0s to 2.8s. Right: Zoom-in of
Left figure from 1.6s to 1.9s.

(a) (b)

Figure 5: Left: Space-frequency domain comparison at x=0m, z=600m, 0Hz-100Hz. Right: Zoom-
in of left figure from 0Hz to10Hz.

(a) (b)

Figure 6: Left: Space-time comparison at x=2,000m, z=600m, 1.0s to 2.8s. Right: Zoom-in of left
figure from 1.9s to 2.2s.
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(a) (b)

Figure 7: Left: Space-frequency domain comparison at x=2,000m, z=600m, 0Hz-100Hz. Right:
Zoom-in of left figure from 0Hz to 10Hz.

replace it with a liner dependence on the phase in equation 20. The resultant difference in spectrum
at the low end has a dramatic impact on subsequent imaging steps, and makes the Kirchhoff-like
asymptotic migration method not an approximated source and receiver coincident at time equals
zero.
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4 Obtaining the angle dependent reflection coefficient from Stolt migration and Kirch-
hoff migration

4.1 Obtaining the angle dependent reflection coefficient from Stolt migration

Wave-equation migration, i.e., migration algorithms such as Stolt migration utilizing Claerbout
Imaging Condition III, can be extended to predict non-zero offset data at depth and provide imag-
ing result with subsurface angle information. In order to obtain the subsurface angle information,
we first change the integral variables in the wave equation migration formula from ksx, kgx, ω to
kx, kh, kz , where

kz ≡ kgz − ksz

= −ω
c

√1− kgx
2c2

ω2
+

√
1− ksx

2c2

ω2

 (21)

kx ≡ kgx − ksx (22)

kh ≡ kgx + ksx (23)

the Jacobian for a change of variables is

|Det
[
∂(kx, kh, kz)
∂(ksx, kgx, ω)

]
| = 2ωkz

c2ksxkgx
, (24)

and the Stolt migration formula equation 48 can be rewritten as

MStolt(x, z) =
c2

2(2π)3

∫
dkz

∫
dkx

∫
dkhD(kgx, ksx, ω)

kszkgz
ωkz

eikzzeikxx. (25)

In equation 25, since two of the integrals are inverse Fourier transform, we can obtain the image
result in kx, kz domain

MStolt(kx, kz) =
c2

4π2

∫
dkhD(kgx, ksx, ω)

kszkgz
ωkz

. (26)

Now the formula only contains an integral of kh, which is the Fourier conjugate of subsurface
offset xh. We obtain the migration imaging result with subsurface offset information,

MStolt(kx, kz, kh) =
c2

4π2

kszkgz
ωkz

D(kgx, ksx, ω). (27)

From equation 27, we can easily get angle dependent reflection coefficient as well as other angle
dependent information.
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4.2 Obtaining the angle dependent reflection coefficient from kirchhoff migration

4.2.1 Obtaining the angle dependent reflection coefficient by interpreting the Kirchhoff mi-
gration result as a fictitious experiment

In equation 15, MKirchhoff (x, z) is Kirchhoff migration image. Although it is a function of x
and z, MKirchhoff (x, z) is not directly related to the reflection coefficient at image point (x, z).
It has limited value (if any) in being interpreted as a reflection coefficient, let alone as the angle
dependence of a reflection coefficient. A coincident source and receiver experiment, directly above
a reflector at small positive time, is related to the reflection coefficient of that local reflection point.
If the migration concept does not correspond to that experiment at depth, one could be able to
correctly locate structure but cannot obtain the exact local reflection coefficient. If you nevertheless
decide to interpret MKirchhoff (x, z) in equation 15 as though it was the output of an imagined or
fictitious zero offset experiment at t = 0, then taking that leap we would write

MKirchhoff (x, z) = MKirchhoff (x, z, xh = 0). (28)

Furthermore, and in addition for the interpretation of the right hand member of equation 28 we will
assume by causality that for xh 6= 0 at t = 0 the measurement would be zero, that is

MKirchhoff (x, z, xh) = 0 for xh 6= 0. (29)

By assuming this interpretation to Kirchhoff migration, we bent over backwards to allow a way
to compareMStolt(x, z, xh) withMKirchhoff (x, z, xh) in terms of amplitude information from the
actual and fictitious experiment output by Stolt migration and Kirchhoff migration, respectively.

4.2.2 Obtaining the angle dependent reflection coefficient by an alternative ray-theory-based
algorithm

According to equation 15

MKirchhoff (x, z) = − z2

2πc

∫
dxg

∫
dxs

d
dtD(xg, xs, t)|t=r/c

(rsrg)3/2
,

Kirchhoff migration is a weighted summation of the derivative of data with respect to time over all
sources and receiver positions, along a travel-time trajectory(shown in figure 8) from the source to
the image point and then to the receiver.

As pointed out in Stolt and Weglein (2012), the formula 15 does not imply that the summation
must be over all sources and receivers. One can pluck out a subset of the complete data set, corre-
sponding to a line or curve on the surface, and consider that as a partial migration, that related to
what that portion of the data contributes to the migration result (given by 15).

Here we are going to show a ray-theory-based algorithm to choose a specific subset of the
complete data set, corresponding to a constant incident/dip angle. In Kirchhoff migration, for every
image point, we can calculate an incident angle and a dip angle for each source and receiver, as
shown in figure 9.
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Figure 8: an example of trajectory function t(xs, xg) = r/c

Figure 9: For every image point C(x, z) we can calculate an incident angle γ and a dip angle α for
each source A(xs, 0) and receiver B(xg, 0).
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First we can calculate two new variables ξ and η;

ξ = tanγ =
−(xs − x)

√
(x− xg)2 + z2 + (xg − x)

√
(x− xs)2 + z2

z(
√

(x− xg)2 + z2 +
√

(x− xs)2 + z2)
=
−(xs − x)rg + (xg − x)rs

zr

(30)

η = tanα =
(xs − x)

√
(x− xg)2 + z2 + (xg − x)

√
(x− xs)2 + z2

z(
√

(x− xg)2 + z2 +
√

(x− xs)2 + z2)
=

(xs − x)rg + (xg − x)rs
zr

,

(31)

where γ is the incident angle and α is the dip angle. The angle convention is defined as follows:

when xg ≥ xs γ ∈ [0,
π

2
)

when xg < xs γ ∈ (−π
2
, 0)

when (xg − x) ≥ (x− xs) α ∈ [0,
π

2
)

when (xg − x) < (x− xs) α ∈ (−π
2
, 0)

Now we can rearrange the 2D Kirchhoff migration from integrals of source and receiver loca-
tions to integrals of ξ and η:

MKirchhoff (x, z) = − z2

2πc

∫
dxg

∫
dxs

d
dtD(xg, xs, t)|t=r/c

(rsrg)3/2

= − z2

2πc

∫
dξ

∫
dη|∂(xs, xg)

∂(ξ, η)
|
d
dtD(xg, xs, t)|t=r/c

(rsrg)3/2
(32)

Then we have

MKirchhoff (x, z, ξ, η) = − z2

2πc
|∂(xs, xg)
∂(ξ, η)

|
d
dtD(xg, xs, t)|t=r/c

(rsrg)3/2

=
z2r2

4πc(rsrg)3/2

d

dt
D(xg, xs, t)|t=r/c, (33)

where the Jacobian |∂(xs,xg)
∂(ξ,η) | can be calculated as follows:

∂ξ

∂xs
=

(x− xg)(x− xs)rg − z2rg − rsr2
g

zrsr2
(34)

∂ξ

∂xg
=
−(x− xg)(x− xs)rs + z2rs + r2

srg
zrgr2

(35)

∂η

∂xs
=

(x− xg)(x− xs)rg + z2rg + rsr
2
g

zrsr2
(36)

∂η

∂xg
=

(x− xg)(x− xs)rs + z2rs + r2
srg

zrgr2
(37)

| ∂(ξ, η)
∂(xs, xg)

| = − 2
(rs + rg)2

= − 2
r2

(38)

|∂(xs, xg)
∂(ξ, η)

| = (| ∂(ξ, η)
∂(xs, xg)

|)−1 = −r
2

2
(39)
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The MKirchhoff (x, z, ξ, η) in equation 33 is an algorithm that can provide ray-theory-based
angle dependent information from Kirchhoff migration. As shown in figure 9, where each red line
corresponds to one ξ and each blue line corresponds to one η. If we do not know the dip angle, we
can sum along all η (each blue line) to obtain the function MKirchhoff (x, z, ξ) for each imaging
point, and retrieve angle information from this equation. If we know the actual dip angle α0 and
η = tanα0, we can simply select a part of the image MKirchhoff (x, z, ξ, η = tanα0) and retrieve
angle information from it.

Please understand that while we have provided ray-theory-based angle dependent information
for each incident/dip angle subset of the data, that information is now provided over a set of can-
didate image points. That is in contrast with the uncollapsed Stolt pre-stack migration. Stolt mi-
gration(equation 48) provides a definite image point and angle dependent information at the image
point.

Figure 10: an example of trajectory function t(xs, xg) = r/c, where each red lines corresponds to
one incident angle and each blue line correspnds to one dip angle

4.3 A numerical test and comparison for obtaining the angle dependent reflection
coefficient from Stolt migration and kirchhoff migration

In the following section, we will demonstrate the differences of the predicted angel dependent re-
flection coefficient between wave-equation migration (Stolt migration) and its asymptotic approxi-
mation (Kirchhoff migration) in the simplest possible case with offset data.

Figure 11 shows the migration procedure for wave-equation migration and its asymptotic form.
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Figure 11: Test content
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4.3.1 Test: model

The simplest scenario for such a test would be a two-layer acoustic model, in which each layer is
homogeneous. Figure 3 shows the model we used to generate the data.

Figure 12: Model. In the model the velocity in the first layer is greater than the velocity of the
second layer, the reflection data does not have a post-critical component.

We test the amplitudes of both wave-equation migration (Stolt migration) and its asymptotic
approximation (Kirchhoff migration) to see how the amplitudes of their images relate to the angle
dependent reflection coefficient. We use analytic data for both Stolt migration (reflectivity method,
see appendix B) and Kirchhoff migration (Cagniard-de Hoop method, see appendix A). Using ana-
lytic data will avoid the effect of any numerical inaccuracy in the data generating procedure and all
differences will be attributable to the processing methods being compared.

4.3.2 Test: Stolt migration and Kirchhoff migration results

We compare the Stolt migration resultMStolt(x, z, xh) and the Kirchhoff migration resultMKirchhoff (x, z, xh)
in different domains. As in this test, the earth is 1D, the x variable is trivial. Given a fixed x,
figure 13 shows MStolt(x, z, xh) and MKirchhoff (x, z, xh); figure 14 shows the absolute value of
MStolt(x, z, kh) andMKirchhoff (x, z, kh); figure 15 shows the absolute value ofMStolt(x, kz, kh)
and MKirchhoff (x, kz, kh). We can see they are quite different.
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(a) (b)

Figure 13: Left: wave-equation migration image in z − xh domain; Right: asymptotic migration
image in z − xh domain.

(a) (b)

Figure 14: Left: wave-equation migration image in z − kh domain; Right: asymptotic migration
image in z − kh domain.
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(a) (b)

Figure 15: Left: wave-equation migration image in kz − kh domain; Right: asymptotic migration
image in kz − kh domain.



72

4.3.3 Test: obtaining the angle dependent reflection coefficient by interpreting the
Kirchhoff migration result as a fictitious experiment

We use

r(ksx, ksz) =
ρ2ksz − ρ1ksz2
ρ2ksz + ρ1ksz2

. (40)

to calculate the exact angle dependent reflection coefficient of the reflector (Left figure in figure 16).
ksz and ksx are incident vertical and horizontal wave numbers in the first layer, respectively, ksz2 is
the vertical wavenumber in the second layer, which can be calculated by

ksz2 =

√
c2

1

c2
2

(k2
sz + k2

sx)− k2
sx (41)

We can retrieve the angle dependent reflection coefficients from Stolt migration using equation
27)

MStolt(kx, kz, kh) =
c2

4π2

kgzksz
ωkz

D(kgx, ksx, ω)

As for one horizontal reflector in this test, the data can be calculated by reflectivity method as
discussed in appendix B,

D(kgx, ksx, ω) =
∫ +∞

−∞
dxge

−ikgxxg r(ksx, ksz)e
iksxxge2ikszzr

4πiksz

=δ(kgx − ksx)
r(ksx, ksz)e2ikszzr

4πiksz
. (42)

Combining equation 27 and equation 42, we have

MStolt(kx, kz, kh) = δ(kgx − ksx)
c2

4π2

kgzksz
ωkz

r(ksx, ksz)e2ikszzr

4πiksz

= δ(kx)
c2e−ikzzr

32π3ω
r(ksx, ksz) (43)

Thus we can obtain the angle dependent plane wave reflection coefficient from Stolt migration
by

r(ksx, ksz) =
∫
dkx

32π3ω

c2e−ikzzr
MStolt(kx, kz, kh) (44)

For Kirchhoff migration, as discussed in section 4.2.1, we can interpreted the imaging process
as a fictitious experiment at depth. Then we can also use the same algorithm as as shown above in
equation 44,

r(ksx, ksz) =
∫
dkx

32π3ω

c2e−ikzzr
MKirchhoff (kx, kz, kh) (45)
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(a) (b) (c)

Figure 16: Left: The angle dependent reflection coefficient by analytic calculation; Middle: The
angle dependent reflection coefficient inverted from wave-equation migration imaging; Right: The
angle dependent reflection coefficient inverted from asymptotic migration imaging.

to obtain the reflection coefficient.

By comparing left and middle figures of 16, we find the inverted angle dependent reflection
coefficient from wave-equation migration image is almost identical as the theoretical value except
for the small vertical wavenumber part. The differences are due to the numerical stabilizing scheme
for the division by small vertical wavenumber. Besides these differences, the result is perfect.
However, the inverted angle dependent reflection coefficient from asymptotic migration image (right
figure in16) is not even close to the theoretical value.

4.3.4 Test: obtaining the angle dependent reflection coefficient by an alternative ray-
theory-based algorithm

An alternative ray-theory-based algorithm to obtain the angle dependent reflection coefficient from
Kirchhoff migration is using the algorithm discussed in section 4.2.2.

In this test we know the actual dip angle α (which is 0), we can chose η = tanα such that

MKirchhoff (x, z, ξ, η = tanα) =
z2r2

4πc(rsrg)3/2

d

dt
D(xg, xs, t)|t=r/c. (46)

(Note that both sides of the equation only depend on ξ. )

Compare this equation with the synthetic data generated by Cagniard-de Hoop method (Ap-
pendix A)

D(xg, xs, t) =
1

2π
Re(p̂p)

H(t− r/c0)√
t− r2/c0

2
,

we can obtain a ray-theory-based angle dependent reflection coefficient by

rasymptotic(ξ) =(
d

dt
Re(p̂p)

H(t− r/c0)√
t− r2/c0

2
)|t=r/c

=
8π2c(rsrg)3/2

z2r2
MKirchhoff (x, z, ξ, η = tanα) (47)
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Figure 17: Predicted angle dependent reflection coefficient. Blue line: Actual reflection coeffi-
cient; Green line: prediction from stolt migration; Red line: prediction from this ray-theory-based
algorithm.

Figure 17 shows the predicted angle dependent reflection coefficient from wave equation migra-
tion (green) and this ray-theory-based algorithm (red).

In figure 17 we find that the inverted angle dependent reflection coefficient from wave-equation
migration image (green line) is almost identical as the theoretical value (blue line). However, the
inverted angle dependent reflection coefficient from this ray-theory-based algorithm (red line) is
very different from the theoretical value (blue line), while the trend is similar 3.

3Note that due to numerical issue, the inverted angle dependent reflection coefficient from this asymptotic algorithm
has been normalized.
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5 Single source and receiver image for Kirchhoff migration and RTM

(a) (b)

Figure 18: Left: single source and receiver image for Kirchhoff migration. Right: single source and
receiver image for RTM.

In this section, we compare the single source and receiver image of Kirchhoff migration and
RTM, as shown in Figure 18. The left figure is the single source and receiver image of Kirchhoff
migration and the right figure is the single source and receiver image of RTM. The images are
ellipses in both cases and this is an indication that Kirchhoff migration and RTM are related.

6 A 1D pre-stack example examining the amplitude differences between Stolt mi-
gration and RTM

As discussed in the previous section, the Stolt migration is given by,

MStolt(x, z) =
1

(2π)3

∫
dω

∫
dksxe

−i(kszz+ksxx)

∫
dkgxe

i(kgzz+kgxx)D(kgx, ksx, ω) (48)

where MStolt(x, z) is the image function.

RTM (Reverse Time Migration) utilizes Claerbout Imaging Condition II for imaging primaries.
In RTM, the source wavefield is forward propagated to the subsurface and the receiver wavefield
is backward propagated to the subsurface; the imaging result is obtained by cross-correlation, i.e.,
the space and time coincidence of up and down waves. The Claerbout Imaging Condition II RTM
formula (Baysal et al., 1983; Whitmore, 1983; McMechan, 1983) is

I(~r) =
∑
xs

∑
ω

S∗(~r, xs, ω)R(~r, xs, ω) (49)

where R is the back-propagated reflection data, S is the forward-propagated source wavefield,
S∗ is the complex conjugate of S. The zero-lag cross-correlation is indicated by the sum over angular
frequency, ω, and the sum over sources adds candidate-image travel-time trajectories.
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7 Example

In this section, we will show the images generated by Reverse Time Migration (Claerbout Imaging
Condition II) and Stolt migration (Claerbout Imaging Condition III ) for a single horizontal reflector.

Figure 19: model

Figure 20: image result (one shot gather) following Claerbout Imaging Conidtion II. The figure
below is a zoom of the upper figure. The Claerbout II image shows an inconsistent amplitude and
shape of the image along the single reflector.

Figure 21: Maximum amplitude of Figure 20 over x

Figure 19 shows the one-reflector model we used for this test. Figure 20 shows the image
generated by Reverse Time Migration with a single shot gather (one source) and figure 21 shows
the maximum amplitude of the image over x ; we observe that there is a blur on the image as well
as some artifacts generated by the limited aperture4. In practice, a sum over all sources is taken

4In this test, we used a very large aperture to minimize the aperture artifacts. However, we can still observe this kind
of artifacts on the image.
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Figure 22: image result following Claerbout Imaging Condition III. The figure below is a zoom of
the upper figure. The Claerbout III image in this figure shows an amplitude and shape consistent
image. The exact same data was used in the simplest 1D earth prestack Claerbout II and Claerbout
III tests and comparisons, indicating their intrinsic and substantive differences even in the simplest
circumstances. As pointed out in Weglein (2015) the differences are much more serious when the
target is complicated and imaging through and beneath a rapidly changing velocity.

Figure 23: Maximum amplitude of Figure 22 over x

with the assumption that the blur and artifacts will go away. However, summing over all sources
does not have a clear physical meaning and it is not guaranteed that all the blur and artifacts will
go away. Figure 22 shows the image generated by Stolt migration with exactly the same data and
figure 23 shows the maximum amplitude of the image over x. We can observe that the image
is flat and with few artifacts. The sum over sources in Stolt migration brings the source down
to a point in the subsurface, while the sum over sources in RTM (equation 49) seeks to mitigate
intrinsic artifacts in Claerbout II imaging. More importantly, every step in Stolt migration has a
clear physical meaning. We can readily obtain interpretable amplitude information, such as angle
dependent reflection coefficient, from Stolt migration.
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8 Conclusion

In this paper we first compared a Claerbout III wave equation migration - Stolt migration and its
asymptotic form - Kirchhoff migration. We first studied and tested the effects caused by the sta-
tionary phase approximation which has dramatic impact on subsequent imaging steps, and makes
the asymptotic migration method not an approximated source and receiver coincident at time equals
zero. Then we compared the amplitudes of Stolt migration and Kirchhoff migration for the simplest
possible overburden, with both perfect data in the domain each requires, and attempt to retrieve
the angle dependent reflection coefficient from both migration methods. For Stolt migration, the
retrieved angle dependent reflection coefficient is almost identical as the theoretical value. For
Kirchhoff migration, we have two different ways to retrieve the angle dependent reflection coeffi-
cient: 1, interpreting the Kirchhoff migration result as a fictitious experiment. 2, using an alternative
ray-theory-based algorithm. And in both cases the predicted angle dependent reflection coefficient
is not as good as the wave equation migration prediction.This result shows that the Claerbout III
wave equation migration - Stolt migration and its asymptotic form - Kirchhoff migration are quite
different. Stolt migration can provide a clear physics meaning with predicting a source and receiver
experiment at depth and one can readily obtain the correct angle dependent reflection coefficient.
Kirchhoff migration loses the definitive ”yes” or ”no” to a point being imaged and the ability to
provide a correct angle dependent reflection coefficient. And then we compare the single source
and receiver image of Kirchhoff migration and RTM, the images indicate that these two migration
methods are related.

Next we discussed the second test, a comparison between the Claerbout Imaging Conidtion III
- utilized in Stolt migration, and Claerbout Imaging Conidtion II- utilized in Reverse Time Mi-
gration, in the simplest 1D earth, with exactly the same prestack data. This result shows that the
Claerbout Imaging Conidtion III and Claerbout Imaging Conidtion II are intrinsically and substan-
tively different even in the simplest circumstances. The Claerbout II image (one shot gather) shows
an inconsistent amplitude and shape of the image along the single reflector. The Claerbout III image
shows an amplitude and shape consistent image. As pointed out in Weglein (2015) the differences
are much more serious when the target is complicated and imaging through and beneath a rapidly
changing velocity. Claerbout III can provide a clear physics meaning with predicting a source and
receiver experiment at depth, collapsed and un-collapsed images with meaningful amplitude and
definitiveness that the Kirchhoff like migrations and Claerbout II cannot provide. Claerbout III
capability and advantages also include amplitude analysis and imaging and imaging-inversion at
specular and non-specular reflectors.

The discussions and conclusions for Claerbout II and III for one way wave in this paper are
indications for the benefits that the two way wave propagation form of Claerbout III will bring to
seismic exploration. And in evaluating the role of multiples in imaging in Weglein (2015) the two
way-wave propagation form of Claerbout III was called upon to provide a definition response to the
question ”multiples: signal or noise?”. (see also (Weglein et al., 2011a,b; Liu, 2013))
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Appendix

10 Synthetic data generation by Cagniard-de Hoop method

For one reflector model, the analytic data can be calculated by Cagniard-de Hoop method in space-
time domain (as utilized inZhang and Weglein (2006)). In an acoustic medium, for a source at
(xs, zs), and a receiver at (xg, zg), the pre-critical reflection data is

P (xs, xg, zs, zg, t) =
1

2π
Re(p̂p)

H(t− r/c0)√
t− r2/c0

2
, (A-1)

with

r =
√

(xs − xg)2 + (zs + zg − 2zr)
2, (A-2)

where zr is the depth of the reflector, c0 is the velocity in the first layer and t is the recorded time.

11 Synthetic data generation by reflectivity method

For 1D earth, the analytic data can be calculated by the reflectivity method in the frequency-wave
number domain, e.g., in Ewing et al. (1957). For one reflector in an acoustic medium, assuming the
a source and a receiver are located at (xs, 0) and (xg, 0) respectively, the data can be calculated as

D(ksx, kgx, ω) =
∫ +∞

−∞
dxge

−ikgxxg r(ksx, ksz)e
iksxxge2ikszzr

4πiqs

=δ(ksx − kgx)
r(ksx, ksz)e2ikszzr

4πiksz
. (A-3)

where ksx and kgx are the Fourier transform of xs and xg respectively, kgx is defined in the same
way in Section 2, ω is the temporal frequency and zr is the depth of the reflector.
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A 1D pre-stack example examining the differences in two important imaging conditions:
the space-time coincidence of up and down waves and the predicted coincident source and
receiver experiment at depth at time zero.
Yanglei Zou, Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

In the 1970’s Claerbout, Lowenthal and their colleagues
(Claerbout, 1971; Riley and Claerbout, 1976; Lowenthal et al.,
1985) introduced three imaging conditions : (1) the explod-
ing reflector model for zero offset data (2) the space and time
coincidence of up and down going waves and (3) predicting
a coincide source and receiver experiment at depth at time
equals zero. We refer to these as Claerbout Imaging Condi-
tion I, II and III, respectively. For a normal incident plane
wave on a single horizontal reflector they are equivalent. For
a shot record recorded above a single horizontal reflector or
more complicated situations they are no longer equivalent.
Claerbout III is superior to Claerbout I and II in that it pro-
vides the most quantitative and interpretable image amplitude.
Claerbout III is also extendable/generalizable to provide an an-
gle dependent reflection coefficient. Stolt and his colleagues
(Clayton and Stolt, 1981; Stolt and Weglein, 1985; Stolt and
Benson, 1986) originally formulated Claerbout III for one-way
waves. For imaging two way propagating waves, Whitmore
and his colleagues (Whitmore (1983)) launched from Claer-
bout II. Weglein, Fang and their colleagues (Weglein et al.,
2011a,b; Liu, 2013) extended Claerbout III for two way prop-
agating waves. In this paper, the first direct and detailed com-
parison of Claerbout II and III is carried out for the simplest
circumstance where they will produce a different result. The
differences are significant and substantive, with implications
far beyond the simple example that allows for transparent anal-
ysis and analytic evaluation and conclusions.

INTRODUCTION

Methods that use the wave equation to perform seismic migra-
tion have two ingredients: (1) a wave propagation component
and (2) an imaging principle or concept. Claerbout (Claer-
bout, 1971; Riley and Claerbout, 1976) was the initial and key
wave-equation-migration imaging-concept pioneer and algo-
rithm developer, together with Stolt (Stolt (1978)) and Lowen-
thal (Lowenthal et al. (1985)) and their colleagues, they intro-
duced imaging conditions for locating reflectors at depth from
surface-recorded data. The three key imaging conditions that
were introduced are:

I. the exploding-reflector model
II. time and space coincidence of up and downgoing waves
III. predicting a source and receiver experiment at a coincident-
source-and-receiver subsurface point, and asking for time equals
zero (the definition of wave-equation migration)

For a normal-incident spike plane wave on a horizontal reflec-

tor, these three imaging concepts are totally equivalent. How-
ever, a key point to make clear for this paper, is that for a
non-zero-offset surface seismic-data experiment, with either a
one-dimensional or a multi-dimensional subsurface, they are
no longer equivalent. Wave-equation migration is defined as
using the Claerbout Imaging Condition III, predicting a source
and receiver experiment at depth at time equals zero. Stolt
and his colleagues (Clayton and Stolt, 1981; Stolt and Weglein,
1985; Stolt and Benson, 1986; Stolt and Weglein, 2012; We-
glein and Stolt, 1999) extended and formulated the experiment-
at-depth concept to allow a separated source and receiver ex-
periment at time equals zero for one way propagating waves.
Weglein, Fang and their colleagues (Weglein et al., 2011a,b;
Liu, 2013) extended Claerbout III for two way propagating
waves. Claerbout III is superior to Claerbout I and II in that it
provides the most quantitative and interpretable image ampli-
tude. Claerbout III is also extendable/generalizable to provide
an angle dependent reflection coefficient. For the purpose of
determining quantitative information on the physical meaning
of the image, the clear choice is Claerbout Imaging Condition
III.

In this paper, we will compare the imaging results obtained by
Claerbout Imaging Condition II and III. The Claerbout Imag-
ing Condition III predicts a physical experiment with both source
and receiver at depth, allowing it to provide the imaging defini-
tiveness and physical interpretation that Claerbout Imaging Con-
dition II cannot match.

STOLT MIGRATION

Stolt migration represents Claerbout Imaging Condition III for
one-way propagating waves. Following Stolt and Weglein (2012),
given a 2D data D(xg,xs, t) with source location (xs,zs = 0) ,
receiver location (xg,zg = 0), and time t, we can perform a
Fourier transform over all coordinates:

D(kgx,ksx,ω) =
∫

dxg

∫
dxs

∫
dtD(xg,xs, t)ei(ksxxs−kgxxg+ωt).

(1)

where kgx, ksx and ω are Fourier conjugates of xg xs and t,
respectively.

Then we can predict the data from an experiment where the
sources and receivers are all at depth z,

P(kgx,z,ksx,z,ω) = D(kgx,ksx,ω)ei(kgz−ksz)z, (2)

where the vertical wavenumber component kgz and ksz are de-
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fined as

kgz =− ω
c

√
1− kgx

2c2

ω2

ksz =
ω
c

√
1− ksx

2c2

ω2 . (3)

If we make two inverse Fourier transform of kgx and kxs to
the same x, we can predict the data of an experiment where a
source and a receiver are both at location (x,z),

P(x,z,x,z,ω) =
1

(2π)2

∫
dksxe−iksxx

∫
dkgxeikgxxP(kgx,z,ksx,z,ω)

=
1

(2π)2

∫
dksxe−i(kszz+ksxx)

×
∫

dkgxei(kgzz+kgxx)D(kgx,ksx,ω) (4)

Next, predict the coincident source and receiver at time equals
zero, we obtain the 2D Stolt migration result,

MStolt(x,z) =
1

2π

∫
dωe−iωtP(x,z,x,z,ω)|t=0

=
1

(2π)3

∫
dω

∫
dksxe−i(kszz+ksxx)

×
∫

dkgxei(kgzz+kgxx)D(kgx,ksx,ω) (5)

where MStolt(x,z) is the image function ∗.

REVERSE TIME MIGRATION

RTM (Reverse Time Migration) is a kind of migration adopt-
ing Claerbout Imaging Condition II for primaries in a medium
where waves are two way propagating. In RTM, the source
wavefield is forward propagated to the subsurface and the re-
ceiver wavefield is backward propagated to the subsurface; the
imaging result is obtained by cross-correlation, i.e., the space
and time coincidence of up and down waves. The Claerbout
Imaging Condition II RTM formula (Baysal et al., 1983; Whit-
more, 1983; McMechan, 1983) is

I(~r) =
∑

xs

∑
ω

S∗(~r,xs,ω)R(~r,xs,ω) (6)

where R is the back-propagated reflection data, S is the forward-
propagated source wavefield, S∗ is the complex conjugate of S.
The zero-lag cross-correlation is indicated by the sum over an-
gular frequency, ω , and the sum over sources adds candidate-
image travel-time trajectories.

∗In Stolt and Weglein (2012), the image function MStolt (x,z) has a half-integral filter. In
this section we do not include the half-integral filter.

EXAMPLE

In this section, we will show the images generated by Reverse
Time Migration (Claerbout Imaging Condition II) and Stolt
migration (Claerbout Imaging Condition III ) for a single hor-
izontal reflector.

Figure 1: model

Figure 2: image result (one shot gather) following Claerbout
Imaging Conidtion II. The figure below is a zoom of the upper
figure. The Claerbout II image shows an inconsistent ampli-
tude and shape of the image along the single reflector.
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Figure 3: image result following Claerbout Imaging Condition
III. The figure below is a zoom of the upper figure. The Claer-
bout III image in this figure shows an amplitude and shape
consistent image. The exact same data was used in the sim-
plest 1D earth prestack Claerbout II and Claerbout III tests and
comparisons, indicating their intrinsic and substantive differ-
ences even in the simplest circumstances. As pointed out in
Weglein (2015) the differences are much more serious when
the target is complicated and imaging through and beneath a
rapidly changing velocity.

Figure 1 shows the one-reflector model we used for this test.
Figure 2 shows the image generated by Reverse Time Migra-
tion with a single shot gather (one source); we observe that
there is a blur on the image as well as some artifacts generated
by the limited aperture†. In practice, a sum over all sources
is taken with the assumption that the blur and artifacts will
go away. However, summing over all sources does not have
a clear physical meaning and it is not guaranteed that all the
blur and artifacts will go away. Figure 3 shows the image gen-
erated by Stolt migration with exactly the same data. We can
observe that the image is flat and with few artifacts. The sum
over sources in Stolt migration brings the source down to a
point in the subsurface, while the sum over sources in RTM
(equation 6) seeks to mitigate intrinsic artifacts in Claerbout II
imaging. More importantly, every step in Stolt migration has
a clear physical meaning. We can readily obtain interpretable
amplitude information, such as angle dependent reflection co-
efficient, from Stolt migration (see Zou (2015) for more de-
tail).

CONCLUSION

In this paper we compared the Claerbout Imaging Conidtion
III - Stolt migration, and Claerbout Imaging Conidtion II- uti-
lized in Reverse Time Migration, in the simplest 1D earth,
with exactly the same prestack data. This result shows that the
Claerbout Imaging Conidtion III (wave equation migration) -
Stolt migration, and Claerbout Imaging Conidtion II- Reverse

†In this test, we used a very large aperture to minimize the aperture artifacts. However, we
can still observe this kind of artifacts on the image.

Time Migration, are intrinsically and substantively different
even in the simplest circumstances. The Claerbout II image
(one shot gather) shows an inconsistent amplitude and shape of
the image along the single reflector. The Claerbout III image
shows an amplitude and shape consistent image. As pointed
out in Weglein (2015) the differences are much more serious
when the target is complicated and imaging through and be-
neath a rapidly changing velocity. Claerbout Imaging Con-
dition III (the wave equation migration) can provide a clear
physics meaning with predicting a source and receiver exper-
iment at depth. Thus we can readily obtain interpretable am-
plitude information, such as angle dependent reflection coeffi-
cient, from Claerbout imaging conidtion III. And in evaluating
the role of multiples in imaging in Weglein (2015) a two way-
wave propagation form of Claerbout III was called upon to
provide a definition response to the question ”multiples: sig-
nal or noise?”. (see also (Weglein et al., 2011a,b; Liu, 2013))
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(Short Note) Claerbout imaging condition III in 1.5D medium for
two-way propagating wave by using the special Green’s function

doubly vanishing at the lower boundary

Qiang Fu, Arthur B. Weglein and Fang Liu

1 Introduction

In the 1970s and 1980s Claerbout, Lowenthal and their colleagues (Claerbout, 1971; Riley and
Claerbout, 1976; Lowenthal et al., 1985) introduced three imaging conditions. We refer to these as
Claerbout Imaging Condition I, II and III, respectively.

The three key imaging conditions that were introduced are:
I. the exploding-reflector model
II. time and space coincidence of up and down-going waves
III. predicting a source and receiver experiment at a coincident-source-and-receiver subsurface
point, and asking for time equals zero.

For a normal incident plane wave on a single horizontal reflector these imaging conditions are
equivalent. For a more complicated situation Claerbout III is superior to Claerbout I and II in that it
provides the most quantitative and interpretable image amplitude. Stolt and his colleagues (Clayton
and Stolt, 1981; Stolt and Weglein, 1985; Stolt and Benson, 1986) originally formulated Claerbout
III for one-way waves. Weglein, Liu (Weglein et al., 2011a,b; Liu, 2013) and their colleagues in
M-OSRP extended Claerbout III for two way propagating waves. Fu et al. (2014) compared the
Claerbout III and Claerbout II for one-way waves. In this short note, we will present the first
imaging result of Claerbout imaging condition III in 1.5D medium for two-way propagating waves.

2 Theory

Weglein and Liu (Weglein et al., 2011a,b; Liu, 2013) have provided the derivations for the Claerbout
imaging condition III in a 1D medium for two-way propagating waves by using the special doubly
vanishing Green’s function GDN0 ; here we extend the algorithm to 1.5D. For simplicity, in this short
note, we use a simple two half-space homogeneous model for all calculations.

The Claerbout Imaging condition III predicts a experiment with source and receiver at the imag-
ing depth and asks for distance between source and receiver (subsurface offset) of the experiment
and the travel time of the experiment at 0 (from a limit approach). We have different choices for
predicting an experiment with source and receiver both at depth. Here we use the Green’s theorem
wave prediction method (Weglein et al., 2011a,b; Liu, 2013).
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Figure 1: The 1.5D two half-space homogeneous velocity model I used in the example.

2.1 Green’s theorem wave prediction in 1.5D with GDN
0

The general form of Green’s theorem wave prediction is

p(~r) (~r in v)
0 (~r out v)

}
=
∫
v

ρ(~r′)G(~r, ~r′)d~r′ +
∮
s

(p(~r′)∇′G(~r, ~r′)−G(~r, ~r′)∇′p(~r′)) · n̂ds (1)

where p(~r) is wave-field at location ~r, G(~r, ~r′) is any valid Green’s function with source point at ~r′
and field point at ~r, s is a closed surface around the volume v, and ρ(~r′) is the source located at ~r′.

Equation 1, if we predict wave-field inside a volume, we need the measurements on the entire
closed surface of the volume, which in our 1.5D case would be the top and bottom surfaces for our
volume (there is no velocity change along the horizontal direction, so we can arrange the volume to
go to infinity along the horizontal direction, so for limited time the evaluation on the ”side walls”
would be not be contributing in the calculation). If we use the special Green’s function GDN0 with
both its value and derivative vanishing on the bottom surface, the integral in equation 1 would vanish
at the bottom surface and the only part that needs to be evaluated is the top surface of the volume.

If we assume there is no source within the volume v, equation 1 becomes

p(~r) (~r in v)
0 (~r out v)

}
=
∫

top surface
(p(~r′)∇′GDN0 (~r, ~r′)−GDN0 (~r, ~r′)∇′p(~r′)) · n̂ds. (2)

3 Analytic calculation for Claerbout III image beneath single reflector

In this section we will use the Green’s theorem wave prediction in 1.5D with GDN0 to calculate an
analytic solution for Claerbout III image beneath the reflector. We will start with data on the mea-
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surement surface (D(xg, zg, xs, zs, t)) and will use the Green’s theorem wave prediction (equation
2) twice to bring the receiver and source down to the image depth (D(xg, zi, xs, zi, t)) and then ask
for subsurface offset and time equal to zero to get the image (I(xi, zi) = D(xi, zi, xi, zi, 0)). Be-
cause our calculation is in 1.5D medium, we can exploit the benefit of 1.5D medium to simplify our
calculation by doing the Green’s theorem wave prediction in frequency domain. So before we do
the calculation, we simplify the Green’s theorem wave prediction (equation 2) in frequency domain
first. We start with the normal 2D acoustic wave equation,

(
∇2 +

ω2

c2(~r)

)
p(~r, ω) = ρ(~r, ω). (3)

For the 2D acoustic wave equation, we can separate the x and z directions as(
∂2

∂z2
+

∂2

∂x2
+

ω2

c2(z, x)

)
p(x, z, ω) = ρ(x, z, ω). (4)

1.5D means we have a 2D line source but the medium itself changes only along the z direction,
not in the x direction. Now let’s start with the 2D acoustic wave equation to get a 1.5D acoustic
wave equation in frequency domain by using the constraint that the medium changes only along the
z direction.

Because there is no velocity varying along the x direction, we can easily perform a Fourier
Transform along the x direction to get(

∂2

∂z2
− k2

x +
ω2

c2(z)

)
p(z, kx, ω) = ρ(z, kx, ω). (5)

Then we can define

k2
z ≡

ω2

c2(z)
− k2

x. (6)

The 1.5D wave equation in frequency domain would be(
∂2

∂z2
+ k2

z

)
p(z, kx, ω) = ρ(z, kx, ω). (7)

kx is a free variable so each kx component for equation 7 is independent. Thus a single kx com-
ponent in equation 7 looks very similar to 1D wave equation in frequency domain (if we ignore the
evanescent part), (

∂2

∂z2
+ k2

)
p(z, ω) = ρ(z, ω). (8)

The Green’s theorem wave prediction (equation 2) will also become a simpler form similar to
its 1D version

p(z, kx, ω) (z ∈ [ztop, zbottom])
0 (z /∈ [ztop, zbottom])

}
=
[
p(z′, kx, ω)

∂G(z, z′, kx, ω)
∂z′

−G(z, z′, kx, ω)
∂p(z′, kx, ω)

∂z′

]∣∣∣∣bottom
z′=top

=
[
GDN0 (z, z′, kx, ω)

∂p(z′, kx, ω)
∂z′

− p(z′, kx, ω)
∂GDN0 (z, z′, kx, ω)

∂z′

]∣∣∣∣
z′=top

(9)
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For simplicity, we omit the independent variables kx and ω in all following equations. The
Green’s theorem wave prediction in frequency domain for 1.5D medium (equation 9) becomes

p(z) (z ∈ [ztop, zbottom])
0 (z /∈ [ztop, zbottom])

}
=
[
GDN0 (z, z′)

∂p(z′)
∂z′

− p(z′)∂G
DN
0 (z, z′)
∂z′

]∣∣∣∣
z′=top

(10)

Now let’s start our first Green’s theorem wave prediction to bring receiver depth for surface
measurement data (D(zg, zs)) from zg down to image depth zi

D̃(zi, zs) = D(zg, zs)
∂G(zi, zg)

∂zg
−G(zi, zg)

∂D(zg, zs)
∂zg

∣∣∣∣bottom
zg=top

(11)

= GDN0 (zi, zg)
∂D(zg, zs)

∂zg
−D(zg, zs)

∂GDN0 (zi, zg)
∂zg

∣∣∣∣
zg=top

(12)

The special Green’s function GDN0 for 1.5D medium in frequency with only one reflector (at depth
a) is

GDN0 (z, z′) =


eik1|z′−z|−eik1(z′−z)

2ik1
z < a [Reik2(z−a)−eik2(a−z)]eik1(z′−a)+[eik2(z−a)−Reik2(a−z)]eik1(a−z′)

2ik2(1+R) z′ < a

eik2|z′−z|−eik2(z′−z)
2ik2

z′ > a

 z > a

(13)

where z is the source point for the Green’s function, z′ is the field point for the Green’s function. k1

is the kz defined by equation 6 in the upper half-space and k2 is kz in the lower half-space. R is the
angle dependent reflection coefficient corresponding to the plain wave.

Its derivative with respect to z′ is

∂GDN0 (z, z′)
∂z′

=


sign(z′−z)eik1|z′−z|−eik1(z′−z)

2 z < a ik1
[Reik2(z−a)−eik2(a−z)]eik1(z′−a)−[eik2(z−a)−Reik2(a−z)]eik1(a−z′)

2ik2(1+R) z′ < a

sign(z′−z)eik2|z′−z|−eik2(z′−z)
2 z′ > a

 z > a

(14)

It is obvious that the forms of Green’s function are different when the field point of the Green’s
function is above and below the reflector. This is why we can get different polarities for the image
above and below the reflector (depth equals a) consistent with the fact that the reflection coefficients
from above and below the reflector have different polarities. In this section we only show the
calculation for beneath the reflector zimg > a, because Claerbout image condition II can not give
us the image for a reflector from beneath. For the image from above, the calculation is similar.

The data we use in our calculation is analytic data in the frequency domain. There are two
events in the data, the direct event (we call Dd) and the reflection event (we call Dr). The data with
source and receiver on the measurement surface is

D(zg, zs) = Dd(zg, zs) +Dr(zg, zs) =
eik1(zg−zs)

2ik1
+
Reik1(2a−zg−zs)

2ik1
(15)
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where zg and zs are the depth for receiver and source respectively.

The derivative of the data with respect zg on the measurement surface is

∂D(zg, zs)
∂zg

=
∂Dd(zg, zs)

∂zg
+
∂Dr(zg, zs)

∂zg
=
eik1(zg−zs)

2
+
−Reik1(2a−zg−zs)

2
(16)

Now we substitute equations 15 and 16 into equation 10 to calculate a virtual data with receiver
down to the image depth. We perform the Green’s theorem wave prediction for the two events
(Dd and Dr) in the data separately and then add them together. We put a tilde on D̃d(zi, zs) to
remind us that the new predicted data D̃d(zi, zs) with receiver at depth is from Green’s theorem
wave prediction rather than actual measurements.

D̃d(zi, zs) =GDN0 (zi, zg)
∂Dd(zg, zs)

∂zg
−Dd(zg, zs)

∂GDN0 (zi, zg)
∂zg

=
[Reik2(zi−a) − eik2(a−zi)]eik1(zg−a) + [eik2(zi−a) −Reik2(a−zi)]eik1(a−zg)

2ik2(1 +R)
eik1(zg−zs)

2

− eik1(zg−zs)

2ik1
ik1

[Reik2(zi−a) − eik2(a−zi)]eik1(zg−a) − [eik2(zi−a) −Reik2(a−zi)]eik1(a−zg)

2ik2(1 +R)

=
[eik2(zi−a) −Reik2(a−zi)]eik1(a−zs)

2ik2(1 +R)
(17)

D̃r(zi, zs) =GDN0 (zi, zg)
∂Dr(zg, zs)

∂zg
−Dr(zg, zs)

∂GDN0 (zi, zg)
∂zg

=− [Reik2(zi−a) − eik2(a−zi)]eik1(zg−a) + [eik2(zi−a) −Reik2(a−zi)]eik1(a−zg)

2ik2(1 +R)
Reik1(2a−zg−zs)

2

− Reik1(2a−zg−zs)

2ik1
ik1

[Reik2(zi−a) − eik2(a−zi)]eik1(zg−a) − [eik2(zi−a) −Reik2(a−zi)]eik1(a−zg)

2ik2(1 +R)

=−R
[

[Reik2(zi−a) − eik2(a−zi)]eik1(a−zs)

2ik2(1 +R)

]
(18)

D̃(zi, zs) =D̃d(zi, zs) + D̃r(zi, zs)

=−R [Reik2(zi−a) − eik2(a−zi)]eik1(a−zs)

2ik2(1 +R)
+

[eik2(zi−a) −Reik2(a−zi)]eik1(a−zs)

2ik2(1 +R)

=
(1−R)eik2(zi−a)eik1(a−zs)

2ik2
=

(1 +R)eik2(zi−a)eik1(a−zs)

2ik1
(19)

where the variable R represents the angle dependent reflection coefficient R = k1−k2
k1+k2

and 1 + R
is the transmission coefficient. Next we bring the source down to the image depth (by exploiting
reciprocity). We perform the Green’s theorem wave prediction again to bring the source down.

Again we add another tilde to remind us the new data ˜̃D(zi, zi) with both source and receiver at
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depth is from two Green’s theorem wave predictions.

∂D̃(zi, zs)
∂zs

=
∂D̃d(zi, zs)

∂zs
+
∂D̃r(zi, zs)

∂zs

=
−(1 +R)eik2(zi−a)eik1(a−zs)

2
(20)

˜̃
D(zi, zi) =GDN0 (zi, zs)

∂D̃(zi, zs)
∂zs

− D̃(zi, zs)
∂GDN0 (zi, zs)

∂zs

=[
[Reik2(zi−a) − eik2(a−zi)]eik1(zs−a) + [eik2(zi−a) −Reik2(a−zi)]eik1(a−zs)

2ik2(1 +R)
]

−(1 +R)eik2(zi−a)eik1(a−zs)

2

− (1 +R)eik2(zi−a)eik1(a−zs)

2ik1

ik1[
[Reik2(zi−a) − eik2(a−zi)]eik1(zs−a) − [eik2(zi−a) −Reik2(a−zi)]eik1(a−zs)

2ik2(1 +R)
]

=
1−Re2ik2(zi−a)

2ik2
(21)

It is easy to know that in the predicted experiment with both source and receiver at the image

depth, ˜̃D(zi, zi) = 1−Re2ik2(zi−a)

2ik2
also contains two events: direct event and reflection event. Only

the reflection event is related to our imaging goal, therefore we remove the direct event and keep
only the reflection event.

˜̃
D′(zi, zi) =

−Re2ik2(zi−a)

2ik2
(22)

Finally we want to see what will be the image for the reflector by the calculation we did above.
We set the image depth at depth of the reflector zi = a, and transform the result in equation 22
back into space-time domain. And then we ask for time and offset at zero to get the image for the
reflector from beneath,

I(zi = a) = −R (23)

which is the correct reflection coefficient from beneath the reflector.

4 Numerical results

In previous section we did the analytic calculations for Claerbout III imaging in 1.5D two-half space
model. In this section we perform the same calculation numerically. We use reflectivity method to
generate the synthetic data and then numerically calculate the Green’s theorem wave prediction
(equation 10) twice to bring source and receiver depth for surface measurement data (D(zg, zs))

from zs and zg down to image depth zi. For the final predicted experiment ˜̃D(zi, zi) we remove the
direct event as we did in analytic calculation.
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Figure 2 shows the synthetic data D(zg, zs) generated by reflectivity method in the frequency
domain with source and receiver at measurement surface. We can see the direct event, the reflection
event and two truncation artifacts caused by truncating the evanescent part in frequency domain.

Figure 3 shows the result of the first Green’s theorem wave prediction D̃(zi, zs) with source at
measurement surface and receiver at the reflector depth zi = a = 1500m. The truncation artifacts
caused by truncating the evanescent part in frequency domain appear as well.

Figure 4 shows the result of the second Green’s theorem wave prediction ˜̃D(zi, zi) with both
source and receiver at reflector depth zi = a = 1500m. We remove the direct event by subtracting
an analytic direct event generated by reflectivity method.

Figure 2: Synthetic data D(zg, zs) generated by reflectivity method in the frequency domain with
source and receiver at measurement surface. We can see the direct event, the reflection event and
two truncation artifacts caused by truncating the evanescent part in frequency domain.

Figure 5 shows the results of the second Green’s theorem wave prediction with the sources
and receivers are set at or below the reflector zi ≥ a. We attempt to remove the direct event by
subtracting an analytic direct event generated by reflectivity method but some residual is still left
for the difference between numerical direct event and analytic direct event.

To better understand the residual direct event caused by the difference between numerical direct
event and analytic direct event, Figure 6 shows a wiggle comparison for one trace in the predicted

experiment ˜̃D(zi, zi): Figure 6a shows the numerical result (direct event and reflection event); Fig-
ure 6b shows the analytic direct event; Figure 6c shows the subtraction result; and Figure 6d shows
the overlay comparison. From Figure 6d the overlay comparison we can see the consistency be-
tween numerical direct event and analytic direct event is not bad. However, due to the direct event
being much stronger than the reflection event, the difference between numerical direct event and
analytic direct event is still not very small comparing with the reflection event.

Figure 7 shows the final image from Claerbout imaging condition III, which is set the imaging
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Figure 3: The result of the first Green’s theorem wave prediction D̃(zi, zs) with source at measure-
ment surface and receiver at reflector depth zi = a = 1500m. The truncation artifacts caused by
truncating the evanescent part in frequency domain appear as well.

Figure 4: The result of the second Green’s theorem wave prediction ˜̃D(zi, zi) with both source and
receiver at reflector depth zi = a = 1500m. We removed the direct event by subtracting an analytic
direct event generated by reflectivity method.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The results of the second Green’s theorem wave prediction with the sources and receivers
are set at or below the reflector zi ≥ a. We attempt to remove the direct event by subtracting an
analytic direct event generated by reflectivity method but some residual is still left for the difference
between numerical direct event and analytic direct event. The panels are for source and receiver at
depth (a) 1500m (right on the reflector); (b) 2000m; (c) 2500m; (d) 3000m (e) 3500m (f) 4000m.
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(a) (b)

(c) (d)

Figure 6: The residual direct event caused by the difference between numerical direct event and
analytic direct event. (a) The numerical result (direct event and reflection event); (b) the analytic
direct event; (c) the subtraction result; (d) overlay comparison.
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depth for the second Green’s theorem wave prediction ˜̃D(zi, zi) at every depth and then ask time
and offset at 0. Please note the image below the reflector (1500m) the polarity is negative which is
consistent with the reflection coefficient from beneath the reflector.

Figure 7: The final image from Claerbout imaging condition III, which is set the imaging depth for

the second Green’s theorem wave prediction ˜̃D(zi, zi) at every depth and then ask time and offset
at 0.

5 Summary

In this short notes, we present the first Claerbout III image from beneath the reflector with for 1.5D
medium one reflector from both analytic and numerical approaches. And the result from above
and beneath the reflector are consistent with the reflection coefficients from above and beneath the
reflector respectively. There are no back scattering artifacts (like in RTM) for Claerbout imaging
condition III for a sharp discontinuous medium.
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Multiples can be useful (at times) to enhance imaging, by providing an approximate image
of an unrecorded primary, but its always primaries that are migrated or imaged
Arthur B. Weglein, M-OSRP, Physics Department, University of Houston

SUMMARY

Primaries are seismic reflection events with one reflection in
their history, whereas multiples are events that have experi-
enced more than one reflection. Migration was originally, and
remains today, basically and unequivocally about taking a pri-
mary event on a recorded seismic trace in time, and to locate
where in space that reflection event was generated by a reflec-
tor; that concept assumes the event in time has only one re-
flection in its history. Since, by definition, only primaries have
experienced one reflector in their history, migration relates to
and only has meaning for primaries. Migration has no mean-
ing for multiples. We will see in this paper that not only did
the original definition of migration only have meaning for pri-
maries, but, in addition, when using the most complete physi-
cally interpretable and quantitative imaging condition for wave
equation migration that only primaries contribute to the image
at any reflector, in depth, and both free surface and internal
multiples do not. However, we also show that multiples can
be useful (at times) by providing an approximate image of an
unrecorded primary.

INTRODUCTION

In this paper, we briefly review methods for migrating data
where waves are: (1) one way propagating and (2) two way
propagating. Methods that use wave theory to migrate data
have two ingredients, a wave propagation component and an
imaging condition. There were three landmark imaging condi-
tions introduced by Claerbout (1971); Loewenthal et al. (1985)
and Stolt (1978) and their colleagues in the 1970’s. Those
three imaging conditions are: (1) the exploding reflector model,
for zero offset data, (2) the space and time coincidence of up
and down-going waves, and (3) predicting a coincident source
and receiver experiment at depth and asking for time equals
zero. We will refer to these three imaging conditions as Claer-
bout imaging I, II, and III, respectively. The third imaging con-
dition predicts an actual seismic experiment at depth, and that
predicted experiment consists of all the events that experiment
would record, if you had a source and receiver at that subsur-
face location. That experiment would have its own recorded
events, the primaries and multiples for that predicted experi-
ment. All of the recorded primaries and multiples contribute
to the events in the predicted coincident source and receiver
experiment at depth. But only the recorded primaries con-
tribute to the coincident source and receiver experiment at time
equals zero. Hence, only recorded primaries contribute to seis-

mic imaging.

SUMMARY OF WAVE EQUATION MIGRATION FOR
ONE WAY AND TWO WAY PROPAGATING WAVES

For one-way wave propagation, the experiment at depth is

D(at depth) =
∫

Ss

∂G−D
0

∂ zs

∫
Sg

∂G−D
0

∂ zg
DdSg dSs, (1)

where D in the integrand is equal to the data on the measure-
ment surface. G−D

0 is the anticausal Green’s function with
Dirichlet boundary condition on the measurement surface, s
= shot, and g = receiver. For two-way wave propagation, the
experiment at depth is:

D(at depth) =
∫

Ss

[
∂GDN

0
∂ zs

∫
Sg

{
∂GDN

0
∂ zg

D+
∂D
∂ zg

GDN
0

}
dSg

+ GDN
0

∂
∂ zs

∫
Sg

{
∂GDN

0
∂ zg

D+
∂D
∂ zg

GDN
0

}
dSg

]
dSs,

(2)

where D in the integrand is equal to the data on the measure-
ment surface. GDN

0 is the Green’s function for the model of the
finite volume that vanishes along with its normal derivative on
the lower surface and the walls (Weglein et al., 2011a,b).

Liu and Weglein (2014) and Weglein (2015) take the next step
towards our goal and objective. The role of recorded primaries
and multiples in contributing first to the predicted source and
receiver experiment at depth, and then to the (Claerbout Imag-
ing III) coincident source and receiver experiment at time equals
zero provides a definitive response to whether or not multiples
contribute to seismic imaging.

We summarize the conclusion of those references (Liu and We-
glein (2014) and Weglein (2015))

1. All recorded events, primaries, internal multiples and
free surface multiples contribute to the predicted coin-
cident source and receiver experiment at depth

2. Only the recorded primaries contribute to the image,
that is once the time equal zero imaging condition is
called on, only recorded primaries contribute to the im-
age at any depth.

3. The location of each reflector is determined, along with
the reflection coefficient for the experiment both from
above and from below each reflector (Figure 1). The
latter is not achievable using Claerbout Imaging II.
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Figure 1: Green’s theorem predicts the wavefield at an arbi-
trary depth z between the shallower depth a and deeper depth
b. The experiment illustrated here corresponds to a plane wave
normal incident on a layered medium with two reflectors. The
measurement coordinates are zg and zs , the coincident source
and receiver depths. a− ε , a+ ε , b− ε , b+ ε are the depth of
the predicted source and receiver experiment at depths above
and below the first reflector at z = a and the second reflector at
z = b.

If you remove the multiples in the recorded data, the coinci-
dent source and receiver experiment at depth would change,
but once the imaging condition is applied, the image’s location
at the correct depth and its amplitude, the reflection coefficient,
will not be affected. If, in these examples, your data consisted
of only multiples, you will have no image at any depth. These
conclusions are all shown in full detail in the above cited ref-
erences (Liu and Weglein, 2014; Weglein, 2015).

Hence, for the purposes of imaging and inversion (and em-
ploying the most capable and quantitative imaging condition
Claerbout imaging III), primaries are the events that contribute
to imaging and inversion and multiples are not.

CLAERBOUT II AND CLAERBOUT III IMAGING RE-
SULTS

In Claerbout imaging II, the time and space coincidence of up
and down waves is formulated as

I(~x) =
∑
~xs

∑
ω

D∗(~x,~xs,ω)U(~x,~xs,ω), (3)

where D is the downgoing wave and U is the upgoing wave,
respectively, and ∗ represents the complex conjugate.

The sum over receivers for a given shot record realizes the
Claerbout II imaging concept. The sum over sources is “intro-
duced” in an ad hoc manner to mitigate the inconsistent ampli-
tude and phase of images, that can be clearly seen from imag-
ing results with exact data and imaging a single horizontal re-
flector (please see the example in Ma and Zou (2015); Zou and

Weglein (2015)). A comparison with a Claerbout imaging III
result for the same reflector and the same data, produces an
accurate and consistent reflection coefficient at every point on
the reflector, for a single shot record.

For Claerbout III, the sum over receivers predicts the receiver
experiment at depth for a source on the measurement surface,
and then the sum over sources then precisely predicts the ex-
periment with the source at depth, as well. The integrations
over receivers and over sources bring the source and receiver
experiment to depth. There is nothing ad hoc or designed to
fix something amiss (as though the data had random noise, to
be mitigated by stacking). The noise is algorithmic, within
Claerbout imaging II and is present with exact, analytic noise
free data in the first integral over receivers in Claerbout imag-
ing II. That is the reason we state that Claerbout III is on the
firmest physics foundation, with an interpretable, quantitative
and consistent meaning to the image. We adopt Claerbout III
for the analysis of the role of primaries and multiples in imag-
ing (in Liu and Weglein (2014) and Weglein (2015)).

For our immediate purpose of examining how multiples can
be used to provide an approximate image of an unrecorded
primary, we look at Claerbout II with a few examples since the
“migrating of multiples” activity is inspired and motivated by
that algorithm with different up and down going waves chosen
for different uses/objectives/purposes.

IMAGING PRIMARIES WITH CLAERBOUT IMAGING
CONDITION II

1D normal incident analytic example
In this section, we use a 1D normal incident analytic example
to illustrate the idea of imaging a primary with Claerbout imag-
ing condition II. Assume a down-going spike data that starts at
z = εs at t = t0 = 0. The down-going wavefield from the source

side that is being forward propagated to depth z is D = eiω[ z−εs
c0

]

whereas the up-going wavefield from the receiver side that

is being back propagated to depth z is U = R1eiω[ d−εs
c0

+ d−z
c0

],
where R1 and d are the reflection coefficient and the depth of
the reflector, respectively (see Figure 2).

Applying the Claerbout imaging condition II we have

Ip =
∫

(e−iω[ z−εs
c0

])× (R1eiω[ d−εs
c0

+ d−z
c0

])dω

=
∫

R1e−iω[ 2d−2z
c0

]dω = πc0R1δ (z−d) (4)

We obtain the correct image location at depth d with an ampli-
tude of πc0R1.
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Figure 2: Migrating a primary with Claerbout II to find an
image.

USING A MULTIPLE TO APPROXIMATELY IMAGE
AN UNRECORDED PRIMARY

1D normal incident analytic example
In this section, we apply Claerbout imaging condition II to a

Figure 3: Use of a multiple to find an approximate image of an
unrecorded primary.

seismic data set that contains a first-order free-surface multi-
ple. Similarly, assuming a down-going spike data starts at z =
εs at t = t0 = 0 (see Figure 3). A first-order free-surface multi-
ple is recorded at zg. The down-going wavefield from a “vir-
tual source” (represented by the dashed red line in Figure 3)

that is being forward propagated to depth z is D =−R1eiω[ d−εs
c0

+ d+z
c0

],
whereas the up-going wavefield from the receiver side (repre-
sented by the yellow dashed line in Figure 4) that is being back

propagated to depth z is U = −R2
1eiω[ d−εs

c0
+ 2d

c0
+ d−z

c0
], where we

have assumed the downward reflection coefficient at the free-
surface to be −1 in deriving the up and down wavefield (see
Figure 3). Applying the Claerbout imaging condition II, we
have

IM =
∫

(−R1e−iω[ d−εs
c0

+ d+z
c0

])× (−R2
1eiω[ d−εs

c0
+ 2d

c0
+ d−z

c0
])dω

=
∫

R3
1e−iω[ 2d−2z

c0
] = πc0R3

1δ (z−d) (5)

We obtain the correct image location at depth d, with a dif-
ferent amplitude of πc0R3

1 , Hence, this use of a multiple can
produce an approximate image of an unrecorded primary.

The methods that seek to use multiples today as “signal” are
really seeking to approximate images due to primaries that
have not been recorded, due to limitations in acquisition. They
are not really using the multiple itself as an event to be fol-
lowed into the subsurface for imaging purposes. Figure 4 il-
lustrates the idea.

Figure 4: Using multiples for imaging.

In a Recent Advances and the Road Ahead presentation, “Mul-
tiples: signal or noise?”, Weglein (2014a) (please see Weglein
(2014b)) showed field data examples, from PGS, where there
was clear added-value demonstrated for the enhanced image
from using multiples.

However, there is another issue: in order to predict a free sur-
face or internal multiple, the primary sub-events that constitute
the multiple must be in the data. If a primary is not recorded,
the multiple that contains that unrecorded primary will not be
predicted as a multiple. That issue and basic contradiction
within the method is recognized by those who practice this
method, and instead of predicting the multiple, they use all the
events in the recorded data, primaries and multiples, and while
the multiples can be useful for predicting approximate images
of missing primaries, the primaries in the data will cause arti-
facts. There are other artifacts that also come along with this
method (from the inability to isolate primaries from multiples
with unrecorded primaries) that have been noted in the litera-
ture (see Figure 5).

Values has been demonstrated for using multiples to enhance
imaging (e.g., Berkhout and Verschuur (1994); Guitton (2002);
Shan (2003); Muijs et al. (2007); Whitmore et al. (2010); Lu
et al. (2011); Liu et al. (2011), Valenciano et al. (2014) and
Weglein (2014a)).

Since the procedure is itself ad hoc, depending on an (Claer-
bout II) imaging condition for primaries which starts off as
somewhat ad hoc (summing over sources), it cannot be eas-
ily or naturally improved because there is no starting point or
framework without the artifacts that utilizes multiples for an
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Figure 5: Examples of different types of false images gener-
ated by the use of multiples to predict the approximate image
of an unrecorded primary. Figure 5a will produce an artifact
due to an image of a multiple and figure 5b will produce an
artifact at z = 0 (the origin) that is beyond false image due to
output mages of multiples.

enhanced image. One response to the artifacts is to collect the
required primaries.

CONCLUSIONS

Hence, primaries are signal and multiples can be useful, at
times, for predicting the image of missing primaries. But it’s
primaries that are signal, that we use for structure and inver-
sion.

Primaries are signal for all methods that seek to locate and
identify targets.

Given an accurate discontinuous velocity and density model,
and data with primaries and multiples, then Liu and Weglein
(2014) and Weglein (2015) demonstrated that only primaries
contributed to the images at every depth. If you predicted the
source and receiver experiment at depth with a smooth ve-
locity, it is possible to correctly locate (but not invert) each
recorded primary event but with a smooth velocity model ev-

ery free surface and internal multiple will then produce a false
image/artifact/event. If you removed the multiples first you
can correctly locate structure from recorded primaries using
a smooth velocity model. The methods that are using multi-
ples to enhance imaging require a velocity model. All velocity
analysis methods require multiples to have been effectively re-
moved. Hence, an effective multiple removal step is a prereq-
uisite for the methods that utilize multiples.

We emphasize that the inability, in practice, to provide an ac-
curate discontinuous velocity model is why multiples need to
be removed before imaging. That reality has been the case, is
the case, and will remain true for the foreseeable future. Mul-
tiples need to be removed before velocity analysis and they
need to be removed before imaging. Many things are useful
for creating primaries: money, the seismic boat, the air-guns,
the observer, the cable, computers, etc., but we don’t call all
useful things signal.

One serious problem and real danger is not in the procedure
itself, but the serious misuse of the term “migration” as in re-
ferring to multiples being migrated. What’s the problem with
the label? We all know that primaries are migrated, and if mul-
tiples are now migrated as well, they must be on equal footing
with primaries, and since they are now rehabilitated as good
seismic citizens, we should no more seek to remove multiples
than we seek to remove primaries. That is part of the danger
of the misuse of the term migration in this process of trying to
have a more complete and approximate set of primaries.

The danger in this mislabeling and overselling in this case is
two-fold, one is a discounting of the actual substantive value
represented by the method, and avoiding disappointment and
an inevitable back-lash, and the second is it can advertently or
inadvertently distract from serious matters of substance (e.g.,
internal multiple elimination for offshore and onshore appli-
cations).

All methods that provide a more complete set of primaries are
to be supported and encouraged. Those methods include: (1)
advances, in and more complete, acquisition, (2) interpolation
and extrapolation methods, and (3) using multiples to predict
missing primaries. However, a recorded primary is still the
best and most accurate way to provide a primary, and the pri-
mary is the seismic signal. On balance, the value that multiples
can provide to improve imaging can often outweigh issues re-
sulting from artifacts.
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Implementing the Claerbout III imaging condition in a laterally varying medium

Fang Liu &Arthur B. Weglein & and Qiang Fu

Abstract

In the Claerbout III imaging conditions Weglein (2014), the physical measurement of an
actual source-receiver pair at depth is predicted and the image is obtained by setting time t = 0.
This is different from the popular idea of space and time coincidence of up and down waves
(Claerbout II) imaging condition in current RTM methods. The Claerbout III imaging condition
was implemented (for up going waves in a homogeneous medium) in the classic FK migration
article by Stolt (1978). The availability of an actual experiment closer to the target offers valu-
able insights to study the angle dependent reflection coefficients beyond the standard structural
map offered by a typical migrated section (Clayton and Stolt, 1981; Weglein and Stolt, 1999,?).

Weglein et al. (2011a,b); Liu and Weglein (2013, 2014) went one step further and predicted
source and receiver experiment imaging condition (Imaging condition III) for two-way waves
in arbitrary layered medium without lateral variation. The key idea to predict two way waves in
the layered medium is the construction of GDN

0 : the Green’s function with vanishing Dirichlet
and Neumann boundary conditions at the prediction depth.

However, an even much greater challenge is to extend Claerbout condition III for two way
waves in medium with lateral variation. The objective of this article is to solve this issue.

1 Introduction

In Weglein (2014), three imaging conditions propoese by Claerbout are summarized as follows:

1. the exploding reflector model;

2. the space and time coincidence of up and down waves;

3. the predicted coincident source and receiver experiment at depth, at time equals zero.

Because of its clarity and definitiveness naturally associated with an actual experiment at depth
much closer the the target, the third imaging condition has been extended for detailed angle-dependent
amplitude analysis at the target and for specular and non-specular reflection (Clayton and Stolt,
1981; Stolt and Weglein, 1985; Stolt and Benson, 1986; Weglein and Stolt, 1999; Stolt and We-
glein, 2012).

The third imaging condition predicts an actual seismic experiment (in other words, the total
wave field that satisfies the wave equation) at depth, and that predicted experiment consists of all
the events that experiment would record, just as if a source and receiver were at that subsurface
location.

Recently, several papers by Weglein and his colleagues (Weglein et al., 2011a,b; Liu and We-
glein, 2013) provided the next step in the evolution of migration based on the Claerbout predicted
source and receiver experiment imaging condition (imaging condition III), extending the prediction
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of the source and receiver experiment in a volume containing two way propagating waves. The
Claerbout III imaging condition is powerful. For example, for numerical example of Liu and We-
glein (2013), inside the second layer, events exist with arrival time independent of the location of
the source-rfeceiver pair (a counter-intuitive result). We initially thought there must errors in the
calculationr, but after careful counting of the ray paths (which exist in the 1D normal incidence
case), such events actually exist!

The experiment is predicted at depth by:

1. Using Green’s theorem in equation (4) with the Green’s function GDN0 that vanishes (along
with its normal derivatives) pn the lower portion of the closed surface to predict an experiment
with receivers at depth (the source is still on top of the closed surface);

2. Experiment with source at depth and receiver on top is constructed by exchanging the source
and receiver locations using the reciprocity principle;

3. An experiment with receivers at depth is predicted by a second application of Green’s theorem
with GDN0 . Now both sources and receivers are at depth.

The significance of researches seeling imaging methods to achieve amplitude with more phys-
ical meaning is due to the fact that, all current RTM methods use the second of Claerbout’s imag-
ing conditions (rather than Claerbout’s imaging condition III, a source and receiver experiment at
depth).

The progresses documented in this article are:

• It provides a stable and accurate scheme to compute the Green’s function with vanishing
Dirichlet and Neumann boundary conditions (GDN0 ) for a medium with lateral variation.

• It is the first implementation of the Claerbout III imaging condition for two-way waves for a
laterally-varying medium.

• It proposes a stable computational framework in the frequency-wavenumber domain to predict
wavefield at depth using the measurements on top without modification to the wave equation
or approximation to the dispersion relation.

• The predicted experiment at depth with Claerbout III imaging condition has more physical
meaning than Claerbout II imaging condition and offers more useful amplitude information
for AVO analysis.

• It offers an explicit solution for the Helmholtz equation using both Dirichlet and Neumann
boundary conditions from only one side, rather than an implicit scheme using either Dirichlet
or Neumann condition everywhere on the boundary around the unknown region.

The following notations are worth mentioning at the beginning: G+
0 and G−0 are used to denote

causal and anti-causal Green’s functions, respectively. GDN0 is used to denote the Green’s function
with vanishing Dirichlet and Neumann boundary conditions at the deeper boundary. The wavenum-
ber k is the Fourier conjugate of the lateral variable x, and the angular frequency ω is the Fourier
conjugate of time t.
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The forward and inverse Fourier transforms between the lateral variable x and wavenumber k
are defined as follows:

f̃(k) =

∞∫
−∞

f(x)e−ikxdx,

f(x) =
1

2π

∞∫
−∞

f̃(k)eikxdk.

(1)

The Fourier transform pair between time t and frequency ω is chosen as:

f̃(ω) =

∞∫
−∞

f(t)eiωtdt,

f(t) =
1

2π

∞∫
−∞

f̃(ω)e−iωtdω.

(2)

In this article, if the symbol f is used to denote a function, then f̃ is utilized to denote its
corresponding conjugate function (after applying a Fourier transform).

2 Green’s theorem for wavefield prediction

In a two dimensional (x′, z′) coordinate system, the Green’s theorem formalism for wavefield pre-
diction pioneered by Weglein et al. (2011a,b) can be summarized as follows: ignoring the depen-
dency of the wavefield P on the fixed ω, the wavefield satisfies the following Helmholtz equation,

(
∂2

∂x′2
+

∂2

∂z′2
+

ω2

c2(x′, z′)

)
P (x′, z′) = 0. (3)

As shown in Figure 1, the Green’s theorem (see equation (36) of Weglein et al. (2011a) for
detail) used to predict the wavefield at another location (x, z) is:

P (x, z) =
∮
S′

ds′
(
P (x′, z′)

∂G0(x, z, x′, z′)
∂~n

−G0(x, z, x′, z′)
∂P (x′, z′)

∂~n

)
, (4)

where ~n is the unit vector in the direction of the outward pointing normal to the surface S′.

In the procedure developed in this article, the objective is to predict wavefield at depth using the
measurement on top, z′ = A. We choose z′ = A for the upper boundary of the volume V and let
the volume extend to infinity in both directions to get rid of the side boundary; the lower boundary
is z′ = B, where B ≥ z, as shown in Figure 2.
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Figure 1: The general schematic view of the volume V and surface S′ in this article, where S′ is the
closed boundary around the volume V . The prediction point (x, z) is within the volume V .

Figure 2: The specifically volume V and its corresponding boundary S′ in this article. The volume
V is chosen to be the zone (infinite in the x direction) between the upper surface z′ = A and the
lower surface z′ = B.



107

3 GDN
0

To predict the wavefield P at (x, z), the values of P on the entire boundary S′ are required. The
challenge is that the value of P is available only at the measurement surface z′ = A, as shown in
Figure 2. Weglein et al. (2011a) propose the idea of GDN0 , i.e., the Green’s function with vansishing
Dirichlet and Neumann boundary conditions on the lower boundary z′ = B.

The first GDN0 identified for the medium is a whole space homogeneous velocity c0, i.e., equa-
tion (43) of Weglein et al. (2011a), is

GDN0 (k, z, z′) =
1

2iq

(
eiq|z

′−z| − e−iq(z−z′)
)
, (5)

where q =
√

ω2

c20
− k2.

4 Properties of GDN
0 for models without lateral variation

For a medium with lateral variation, a simple Fourier transform from x to k will simplify the multi-
dimensional wave propagation problem into the 1D form listed in Weglein et al. (2011a,b); Liu and
Weglein (2013). For example, for the following wave equation with a layered medium:

(
∂2

∂x′2
+

∂2

∂z′2
+

ω2

c2(z′)

)
P (x′, z′) = 0,

a straightforward application of
∞∫
−∞

dx′e−ikx′ will give:

(
d2

dz′2
+
[
ω2

c2(z′)
− k2

])
P̃ (k, z′) = 0.

If we define q ≡
√

ω2

c2(z′) − k2, we have a 1D wave equation discussed in Weglein et al.
(2011a,b); Liu and Weglein (2013, 2014):

(
d2

dz′2
+ q2

)
P̃ (k, z′) = 0.

Note that in our convention, the sign of q =
√

ω2

c2(z′) − k2 is chosen to follow that of ω if ω2

c2(z′) −
k2 ≥ 0, otherwise, q will be an imaginary number; we chose its imaginary part to be positive. This
choice implies that the causal solution for the homogeneous medium G+

0 = eiq|zs−z|
2iq exponentially

decays for large value of k.

According to Liu and Weglein (2013), the properties ofGDN0 for models without lateral variation
can be summarized as follows:

• The vanishing property: GDN0 (z, z′) ≡ 0 if z′ > z. We need GDN0 (z, z′) and ∂GDN0 (z,z′)
∂z′

vanishes at z′ = B; and since the region between z and z′ is source-free, the vanishing
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Dirichlet and Neumann boundary conditions will uniquely determine the wavefield between
z and z′. Since a wavefield with all zeros everywhere is evidently a solution with correct
boundary conditions, it is indeed the unique solution to the wave equation in this region. And
consequently the wavefield between z and z′ must vanish.

• The independence of GDN0 (z, z′) from any heterogeneity outside the interval (z′, z). This
is very different from G+

0 . Since wave goes everywhere, a receiver in a fixed location will
record the impact of the velocity field everywhere in space. In other words, G+

0 depends
on heterogeneities everywhere. Since GDN0 (z, z′) depends only on the velocity field in the
interval (z′, z), to predict the wavefield at depth z, we only need to know the velocity between
z and z′, i.e., the same conclusion as for the finite volume model for seismic migration.

• If the medium has no lateral variation, GDN0 is found to be of finite length in the time do-
main for a fixed (z′, z) pair, while the corresponding G+

0 can be infinite in length if internal
multiples are present.

• GDN0 (z, z′) is neither causal nor anti-causal. It can be construted as the sum of G+
0 (the causal

solution) and a solution to the source-free wave equation.

• Reciprocity violated. As an example: GDN0 (z, z′) ≡ 0 if z′ > z, but GDN0 (z, z′) 6= 0 if z′ < z.

• Exponential growth for large values of k. For example, in the simplest case with homoge-
neous velocity c0 everywhere: GDN0 = eiq|z

′−z|−eiq(z′−z)
2iq , where q2 = ω2

c20
− k2. For z′ < z,

|z′ − z| equals to z − z′, having the opposite sign as (z′ − z). Consequently no matter what
sign convention we choose, two terms in the numerator of the aforementioned GDN0 formula
will have one term with exponetial growth, and anther with exponetial decay. Since GDN0 has
exponential growth in the k-domain, its exact x-domain expression cannot be expressed as an
ordinary function. To be more specific: its x-domain expression for anywhere z′ < z cannot
be easily expressed as a discretely sampled series since the condition of sampling theorem1

is violated.

• It can be constructed as the sum of G+
0 (the causal Green’s function) and a solution to the

corresponding source-free wave equation, or homogeneous solution.

5 The properties of GDN
0 (x, z, x′, z′) with lateral variation

By definition GDN0 satisfies the following boundary condition at z′ = B:

GDN0 (x, z, x′,B) ≡ ∂GDN0 (x, z, x′,B)
∂z′

≡ 0. (6)

Note that if we substitute the solution GDN0 (x, z, x′, z′) = 0 (for z′ > z) into the left hand side
of equation (11), we obtain zero. In other words, GDN0 (x, z, x′, z′) = 0 is indeed a solution of equa-
tion (11) for z′ > z. In addition, it satisfies the desired vanishing Dirichlet and Neumann boundary
conditions specified in equation (6). Hence it is indeed the unique solution for GDN0 (x, z, x′, z′) = 0
for z′ > z.

1For a sampling scheme in the x direction with sampling rate ∆x, there should not be much information beyond the
Nyquist wavenumber π

∆x
.
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Therefore GDN0 with lateral variation satisfies the same vanishing property as GDN0 in the much
simpler case where lateral variation is absent.

If we define ε an arbitrary small positive number, we know that GDN0 (x, z, x′, z′ = z + ε) = 0.
It is more difficult to imagine the value of GDN0 (x, z, x′, z′) when z′ = z − ε.

In this paragraph we assume z′ < z. According to the finite volume model for seismic mi-
gration, to predict the wavefield at z using the wavefield at depth z′ as input, only the veloc-
ity field between z′ and z is needed. Since the aforementioned prediction can be carried out by
GDN0 (x, z, x′, z′), GDN0 (x, z, x′, z′) is independent of the heterogeneities outside the interval (z′, z).

Using the independence of GDN0 (x, z, x′, z′) from heterogeneity outside the interval (z′, z), we
can obtain the boundary value of GDN0 (x, z, x′, z′) when z′ → z − ε: GDN0 will be the same if the
velocity outside the interval (z − ε, z) is replaced by c(x, z), i.e., the local velocity at the source
location.

Let us consider the new “replaced medium” as ε→ 0:

• The causal solution G+ for this medium will approach G+
0 for a homogeneous medium with

velocity c(x′, z′) ≡ c(x, z). This can be easily proven by the forward scattering series using
c(x′, z′) ≡ c(x, z) as the reference medium. In this case, since the size of the interval:

(z′, z) = (z − ε, z)

can be arbitrarily small, and the perturbation α = c2(x,z)

c(x′,z′)−1 is finite in magnitude, the support

of the perturbation α approaches zero. And in the forward scattering series2 to construct the
Green’s function for the heterogeneous medium:

G = G0 +G0ω
2αG0 +G0ω

2αG0ω
2αG0 + · · · (7)

except for the first term, every other term in the right-hand side of the equation above vanishes
since the inclusion of a zero-support perturbation α will reduce an integration over this α to
zero. We have G = G0.

• In the procedure to construct GDN as the sum of G+ and a homogeneous solution to cancel
G+ for z′ > z, the aforementioned homogeneous solution will approach the homogeneous
solution to cancel G+

0 . Consequently GDN should approach GDN0 .

Since in the situation z′ < z, the GDN0 expression for a homogeneous velocity c0 is:

GDN0 (k, z, z′) =
eiq(z−z′) − eiq(z′−z)

q
= sin(q(z − z′))/q,

∂GDN0 (k, z, z′)
∂z′

= − cos(q(z − z′)).
(8)

2A detailed description of the forward scattering series can be found in Weglein et al. (2003).
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In the special case z′ = z, equation (8) can be used to serve as the initiation point for further
calculating GDN0 through a laterally varying medium: since the region z′ < z is again source free.
In the special case of z′ = z, we have:

GDN0 (k, z, z′ = z) = 0,

∂GDN0 (k, z′)
∂z′

∣∣∣∣
z′=z

= −1.
(9)

With the boundary values in equation (9), we can start the procedure documented in the next
section to calculate GDN0 for smaller and smaller z′ values of through a laterally varying medium.

6 Theory

Let us consider the wave progataion problem in a source-free region:

(
∂2

∂x′2
+

∂2

∂z′2
− 1
c2(x′, z′)

∂2

∂t′2

)
P (x′, z′, t′) = 0. (10)

Since the velocity field c(x′, z′) is not a function of time, the wave equation above can be
simplified by Fourier transforming into the frequency ω-domain3.

(
∂2

∂x′2
+

∂2

∂z′2
+

ω2

c2(x′, z′)

)
P (x′, z′) = 0. (11)

Note that equation (11) is satisfied for any fixed ω (we purposely omitted the depencence of P
on the fixed ω in our notation); the complicated temporal variation is crystalized into a single ω, a
significant reduction in complexity.

7 Numerical wavefield prediction in a laterally varying and source-free medium

For the wave propagation problem listed in equation (11), our objective is to predict the wave-
field at deeper depth using the measurements from shallower depth. In most publications solving
the boundary value problem for a Helmholtz equation, the wavefield (or its normal derivative) at
every location on the boundary around the unknown region is known, and a set of coupled finite-
difference equations, each in the form of equation (12), are formulated for all of the unknown grids.
The scheme is implicit since each finite-difference equation cannot be solved immediately. Conse-
quently the inversion of a huge4 sparse matrix is necessary. The advantage of this approach is that
stability and accuracy is normally better than for an explicit scheme.

3In the notation of this article, the Fourier transform from time to frequency is defined as:
∞R
−∞

eiωtdt.

4For example, if the dimension for the region of unknown grids is 200 in the x-direction, and 100 in the z-direction,
the rank of the matrix we need to invert is 200× 100 = 20, 000.
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Without the luxury of boundary values being available everywhere around the unknown region,
the first author of this article had tried solve it in an explicit scheme. First we express the partial
derivatives in second-order finite difference form,

P ((n+ 1)∆x,m∆z) + P ((n− 1)∆x,m∆z)− 2P (n∆x,m∆z)
(∆x)2

+

P (n∆x, (m+ 1)∆z) + P (n∆x, (m− 1)∆z)− 2P (n∆x,m∆z)
(∆z)2

+

ω2

c2(n∆x,m∆z)
P (n∆x,m∆z) = 0.

(12)

We know the wavefield at shallower depth, i.e., all grid values at depth z = (m − 1)∆z and
z = m∆z; numerically it is very straightforward to solve the grids at z = (m+ 1)∆z as follows:

P (n∆x, (m+ 1)∆z) =
[
2
(

1 +
(∆z)2

(∆x)2

)
+

ω2(∆z)2

c2(n∆x,m∆z)

]
P (n∆x,m∆z)

− P (n∆x, (m− 1)∆z)− P ((n+ 1)∆x,m∆z) + P ((n− 1)∆x,m∆z)
(∆x)2/(∆z)2

(13)

The scheme in equation (13) is fast and explicit since

• Knowing the grid values at depth z = (m−1)∆z and z = m∆z, all the unknown grid values
at depth z = (m+ 1)∆z can be straightforwardly solved using equation (13).

• With all grid values at depth z = (m+1)∆z being solved, equation (13) can again be utilized
to solve the unknown grids at depth z = (m+ 2)∆z since grid values at depth z = m∆z are
known.

• In a similar fashion, the grid values at depth z = (m + 3)∆z, z = (m + 4)∆z, · · · can be
found. Then we have an explicit scheme to obtain the unknown grid at an arbitrary depth.

The issue for this scheme is stability; the wavefield is hardly expressible as IEEE floating point
numbers after just a couple of iterations. The situation is severe since the aforementioned stability
issue is present even for a velocity field without any lateral variations and an input boundary wave
with smooth lateral variations. Considering the fact that in our sitiation, the boundary values ofGDN0
change too quickly to allow any lateral sampling rate ∆x to satisfy Nyquist−Shannon sampling
theorem, the challenge to solve it is obvious.

Predicting the experiment at depth from the measurement surface had been achieved in FK
migration (Stolt, 1978) assuming a one-way wave propagation. The formulism is constructed in the
wavenumber (k) domain, and the evanescent part is explicitly excluded due to noise. The success in
FK migration suggests that the solution may be easier to construct in the wavenumber (k) domain.

Therefore we consider the solution of the problem in the wavenumber (k) domain. First we
assume ∆z (the step size in the z-direction) in each step is so small that at each fixed x location,
the vertical velocity variation is neglegible. In other words, we consider equation (11) in a very thin
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vertical zone such that the vertical velocity variation can be ignored, and the velocity field can be
expressed as5:

1
c2(x′, z′)

=
1

2π

∞∫
−∞

Ã(k)eikx
′
dk =

∑
n

ane
ix′n∆k. (14)

This can be easily achieved though a Fourier transform over x′. And equation (11) can be
expressed as:

(
∂2

∂x′2
+

∂2

∂z′2
+ ω2

∑
n

ane
ix′n∆k

)
P (x′, z′) = 0. (15)

Applying a Fourier transform
∞∫
−∞

eikx
′
dx′ to equation (15), we have:

∂2P̃ (k, z′)
∂z′2

+
(
ω2a0 − k2

)
P̃ (k, z′) = −ω2

∑
n6=0

anP̃ (k − n∆k, z′), (16)

where P̃ (k, z′) =
∞∫
−∞

eikx
′
P (x′, z′)dx′ is the wavefield in the k-domain. Approximating the

partial derivatives in a second-order central finite-difference scheme, we have:

P̃ (k, z′ + ∆z) + P̃ (k, z′ −∆z)− 2P̃ (k, z)
(∆z)2

+
(
ω2a0 − k2

)
P̃ (k, z′) = −ω2

∑
n 6=0

anP̃ (k−n∆k, z′).

(17)

According to equation (17), the wavefield at z′ + ∆z is explicitly expressible by the wavefield
at shallower depths as follows:

P̃ (k, z′ + ∆z) = −P̃ (k, z′ −∆z) +
[
2 + (k∆z)2 − ω2(∆z)2a0

]
P̃ (k, z′)

− ω2(∆z)2
∑
n6=0

anP̃ (k − n∆k, z′). (18)

Note that equation (18) is essentially a 1D Helmholtz equation, with an additional extraneous
“source term” expressed in the last term. We managed to achieve a stable iterative solution for the
wavefield at depth z′ + ∆z, z′ + 2∆z, z′ + 3∆z, · · · , to arbitrary depth, for the non-evanescent
situations (i.e., ω

2

c2
− k2 ≥ 0).

Use the following backward difference schemes:

5This may sound like a very strange point of view about the velocity, since in the real world it is hard to find geology
like this. It is a more realistic situation the smaller ∆z is. The logic here is nothing but the essence of digitation. With a
consecutive series of vertically invariant thin layers, any complicated geology can be sufficiently expressed since the size
of ∆z is purely artificial and completely within our control.
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∂P̃ (k, z′ + ∆z)
∂z′

≈ P̃ (k, z′ + ∆z)− P̃ (k, z)
∆z

,

∂P̃ (k, z′)
∂z′

=
P̃ (k, z′)− P̃ (k, z −∆z)

∆z
.

(19)

If there is no lateral variation, all the coefficients an ≡ 0 for n 6= 0. The last term in equa-
tion (18) vanishes, and we have:

(
P̃ (k, z′ + ∆z)

∂P̃ (k, z′ + ∆z)/∂z′

)
=
(

1− (q∆z)2 ∆z
−q2∆z 1

)(
P̃ (k, z′)

∂P̃ (k, z′)/∂z′

)
. (20)

The scheme in equation (20) has obvious issues:

• The variation of the wave prediction as a function of the ∆z variable is not consistent; accord-
ing to the left-hand-side, the partial derivative of the first equation in the scheme above should
be equal to the second equation. This is obviously violated if we check the right-hand-side.

• It will have accuracy and convergence issues if ∆z, q, or their product q∆z is too large since
these coefficients are used in multiplcations to produce the wavefield in the next step.

However, the crude scheme in equation (20) can be made self-consistent, 100% accurate and
un-conditionally stable by shrinking the size of ∆z. Let us consider sub-dividing the ∆z interval m
times, and repeatedly apply equation (20) m times on the aforementioned sub-inverval, each with
thickness ∆z

m .

The aforementioned repeated application of equation (20) m times is equivalent to multiplying
the matrix [Ψ]m in equation (20) where the matrix Ψ is defined as:

Ψ =
(

1− (q∆z/m)2 , ∆z/m
−q2∆z/m , 1

)
. (21)

We can diagonalize the matrix [Ψ] to compute [Ψ]m for large values of m.

Ψ =
(

1− (q∆z/m)2 , ∆z/m
−q2∆z/m , 1

)
= Q

(
λ1 0
0 λ2

)
Q−1, (22)

where λ1 = 1− q2(∆z)2

2m2 − q∆z
2m

√
q2(∆z)2

m2 − 4, λ2 = 1− q2(∆z)2

2m2 + q∆z
2m

√
q2(∆z)2

m2 − 4, and the
matrix Q and its inverse are:

Q =

(
q∆z
m +

√
q2(∆z)2

m2 − 4 , q∆z
m −

√
q2(∆z)2

m2 − 4
2q , 2q

)
,

Q−1 =
1

4q
√

q2(∆z)2

m2 − 4

 2q , − q∆z
m +

√
q2(∆z)2

m2 − 4

−2q , q∆z
m +

√
q2(∆z)2

m2 − 4

 .

(23)
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The power [Ψ]m can be computed as follows:

[Ψ]m =
[
Q

(
λ1 0
0 λ2

)
Q−1

]m
= Q

(
λm1 0
0 λm2

)
Q−1. (24)

Now we consider the limiting case for m→∞:

lim
m→∞Q = lim

m→∞

(
q∆z
m +

√
q2(∆z)2

m2 − 4 , q∆z
m −

√
q2(∆z)2

m2 − 4
2q , 2q

)
=
(

2i , −2i
2q , 2q

)

lim
m→∞Q

−1 = lim
m→∞

1

4q
√

q2(∆z)2

m2 − 4

 2q , − q∆z
m +

√
q2(∆z)2

m2 − 4

−2q , q∆z
m +

√
q2(∆z)2

m2 − 4

 =
1

8iq

(
2q , 2i
−2q , 2i

)
(25)

lim
m→∞λ

m
1 = lim

m→∞

(
1− iq∆z

m

√
1− q2(∆z)2/(4m2)− q2(∆z)2

2m2

)m
= exp

[
lim
m→∞m×

(
−iq∆z

m

√
1− q2(∆z)2/(4m2)− q2(∆z)2

2m2

)]
= e−iq∆z

lim
m→∞λ

m
2 = lim

m→∞

(
1 + i

q∆z
m

√
1− q2(∆z)2/(4m2)− q2(∆z)2

2m2

)m
= exp

[
lim
m→∞m×

(
i
q∆z
m

√
1− q2(∆z)2/(4m2)− q2(∆z)2

2m2

)]
= eiq∆z

(26)

Combining equations (20)−(26)we have a iterative scheme as follows:

(
P̃ (k, z′ + ∆z)

∂P̃ (k, z′ + ∆z)/∂z′

)
=
(

2i , −2i
2q , 2q

)(
e−iq∆z 0
0 eiq∆z

)
1

8iq

(
2q , 2i
−2q , 2i

)(
P̃ (k, z′)

∂P̃ (k, z′)/∂z′

)

=

(
cos(q∆z) , sin(q∆z)

q

−q sin(q∆z) , cos(q∆z)

)(
P̃ (k, z′)

∂P̃ (k, z′)/∂z′

)
(27)

The scheme in equation (27) is more accurate than the original scheme since the ∆z interval
is sub-divided into an infinite number of sub-intervals. Comparing with the original scheme in
equation (20), there are many advantages:

• The variation of the wave prediction as a function of the variable ∆z is consistent; according
to the left-hand-side, the partial derivative of the first equation in the scheme above should be
equal to the second equation. This is indeed the case if we check the right-hand-side.

• For a medium without lateral variation (i.e, no cross communication between different k-
spectrums), this scheme is one hundred percent accurate for arbitrary ∆z. As a quality check,
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in a medium with homogeneous velocity c0,GDN0 from equation (43) of Weglein et al. (2011a)
is,

GDN0 (k, z, z′) =
1

2iq

(
eiq|z

′−z| − e−iq(z−z′)
)
.

For z′ < z, it can be expressed as:

P (k, z′) =
sin(q(z − z′))

q
,

∂P (k, z′)
∂z′

= − cos(q(z − z′)).

The wavefield and its normal derivative at another depth z′ + ∆z are:

P̃ (k, z′ + ∆z) =
sin(q(z − z′ −∆z))

q
,

∂P̃ (k, z′ + ∆z)
∂z′

= − cos(q(z − z′ −∆z)),

respectively. A straightfowd substitution can verify that equation (27) can obtain the wave-
field and its normal derivative at another depth z′ + ∆z stably and accurately for arbitrary
step size ∆z.

The accurate scheme in equation (27) is only for a medium without lateral variation. The mod-
ification of the original crude scheme in equation (20) to derive equation (27), although valid for a
medium without lateral variation, should shed light on the intuitive leap required for an improved
version for the crude scheme in equation (18).

The modifications to the iterative scheme for a medium without lateral variation to derive a
scheme for a medium with lateral variation are as follows:

• The matrix element at the first row and first colume is changed from 1− (q∆z)2 to cos(q∆z).
Both schemes become closer and closer to each other as ∆z → 0. In other words, the original
crude scheme is accurate for sufficiently small ∆z.

• The matrix element at the first row and second colume is changed from ∆z to sin(q∆z)/q.
The modification agrees with the original crude scheme for very small ∆z.

• The matrix element at the second row and first colume is changed from−q2∆z to−q sin(q∆z).
The crude coefficient −q2∆z, which implies a linear increase for the output in terms of ∆z,
is modified to let the output have a sinusoidal dependence on the step size ∆z, a modification
to let the output better satisfy the Helmholtz equation.

• The matrix element at the second row and second colume is changed from 1 to cos(q∆z). The
crude coefficient 1, which implies independence of the output in terms of ∆z, a phenomena
obviously unreasonable for big ∆z, is again modified to let the output have a sinusoidal
dependence on the step size ∆z, a modification to let the output better satisfy the Helmholtz
equation.
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The ideas behind the aforementioned modifications can be used to improve our scheme with
lateral variation as shown in equation (18). Since the other coefficients have been dealt with, the
only remaining coefficient is the last one, namely ω2(∆z)2. This coefficient implies a quadratic in-
crease for the output in terms of ∆z, obvious unreasonable for a wavefield satisfying the Helmholtz
equation in a large ∆z situation. We modify it to cos(q∆z)−1

q2 (q2 + k2), which agrees with the orig-
inal coefficient when ∆z is sufficiently small, and results in an output better fitting the Helmholtz
equation. With this modification, the wavefield prediction formula equation (18) becomes:

P̃ (k, z′+∆z) = cos(q∆z)P̃ (k, z′)+
sin(q∆z)

q

∂P̃ (k, z′)
∂z′

+
cos(q∆z)− 1

q2
ω2
∑
n6=0

anP̃ (k−n∆k, z′).

(28)

Its second-order partial derivative over the depth variation ∆z is:

∂2P̃ (k, z′ + ∆z)
∂(∆z)2

= −q2 cos(q∆z)P̃ (k, z′)−q sin(q∆z)
∂P̃ (k, z′)
∂z′

−cos(q∆z)ω2
∑
n 6=0

anP̃ (k−n∆k, z′).

(29)

According to the result from equations (28) and (29), we have

∂2P̃ (k, z′ + ∆z)
∂(∆z)2

+ q2P̃ (k, z′ + ∆z) = −ω2
∑
n6=0

anP̃ (k −∆k, z′). (30)

The right-hand-side of the equation above is not perfect, but is nevertheless very close to
−ω2

∑
n6=0

anP̃ (k − ∆k, z′ + ∆z) under that condition that ∆z is small, i.e., the desired result that

is 100% consistent with the original Helmholtz equation with lateral variation. Note that as ∆z is
getting smaller, each P̃ (k −∆k, z′) becomes a better approximation for P̃ (k −∆k, z′ + ∆z), and
consistency with the original Helmholtz equation improves.

Taking the partial derivative of the predicted wavefield P̃ (k, z′ + ∆z) in equation (28) over the
depth variation ∆z, we have the normal derivative values necessary for the next step iteration:

∂P̃ (k, z′ + ∆z)
∂z′

= −q sin(q∆z)P̃ (k, z′)+cos(q∆z)
∂P̃ (k, z′)
∂z′

−sin(q∆z)
q

ω2
∑
n6=0

anP̃ (k−n∆k, z′).

(31)

We can combine equations (28) and (31) to have a scheme to predict wavefield and its normal
derivative to another depth (z′ + ∆z) using the wavefield P and its normal derivative at depth z.
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P̃ (k, z′ + ∆z) = cos(q∆z)P̃ (k, z′) +
sin(q∆z)

q

∂P̃ (k, z′)
∂z′

+
cos(q∆z)− 1

q2
ω2
∑
n 6=0

anP̃ (k − n∆k, z′),

∂P̃ (k, z′ + ∆z)
∂z′

= −q sin(q∆z)P̃ (k, z′) + cos(q∆z)
∂P̃ (k, z′)
∂z′

− sin(q∆z)
q

ω2
∑
n6=0

anP̃ (k − n∆k, z′).

(32)

With the value of the wavefield P̃ and its normal derivative at depth z′ + ∆z, we can apply
equation (32) again to compute the wavefield at depth z′+ 2∆z. This iteration be repeated until we
reach the desired depth level z.

Note that with lateral variation, to predict the wavefield P̃ (k, z′ + ∆z), the spectrum at other k
values is also needed, in other words, the k-spectrum is convolved together. To predict P̃ (k, z′+∆z)
with sufficient accuracy, we need a range of spectrum centered at k. In seismic data, the evanescent
part of a spectrum is famous for noise. To actually predict data using equation (32), the exclusion
of the evanescent spectrum is tricky since its influence on the prediction result for non-evanescent
spectrum is ways there, yet the most popular choice of completely excluding their contribution will
shut down a large amount of connection between the input data and output prediction.

If equation (32) is used to construct GDN0 from the boundary at z′ = z, the input for the scheme
is completely noise free. The numerical procedure of iteratively applying equation (32), although it
will produce numerically demanding numbers (as it should in the evanescent part of P̃ (k)), it can
be made accurate if:

• the step size ∆z is sufficiently small;

• the range of the k spectrum is sufficiently wide.

After obtaining the value ofGDN0 and its normal derivatives with sufficient accuracy, we can then
choose a reasonable range of spectrum for GDN0 to predict a source-receiver experiment at depth.

If the input data for equation (32) have the following conjugate symmetry:

P̃ (−k, z′) =
[
P̃ (k, z′)

]∗
,

∂P̃ (−k, z′)
∂z′

=

[
∂P̃ (k, z′)
∂z′

]∗
(33)

(where ∗ indicated complex conjugation), then its output result also satisfies the same symmetry,
due to the following factors: when the argumen of P̃ is changed from k to −k in equation (32), we
have:

1. the following coefficients are kept unchanged: q, cos(q∆z), sin(q∆z)
q , q sin(q∆z), and cos(q∆z)−1

q2 ;
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2. the following quantities become the conjugate of the originals: P̃ (−k, z′) =
[
P̃ (k, z′)

]∗
and

∂ eP (−k,z′)
∂z′ =

[
∂ eP (k,z′)
∂z′

]∗
;

3. the common sum for both equations in the last becomes the conjugate of the original:

∑
n6=0

anP̃ (−k − n∆k, z′) =
∑
n6=0

an

[
P̃ (k + n∆k, z′)

]∗
=
∑
n6=0

[a−n]∗
[
P̃ (k + n∆k, z′)

]∗

=
∑
n6=0

[
a−nP̃ (k + n∆k, z′)

]∗
=

∑
n6=0

a−nP̃ (k + n∆k, z′)

∗

=

∑
n6=0

anP̃ (k − n∆k, z′)

∗

The symmetry relation above is very important in numerical implementation since it can reduce
the calculation by half. We obtained very stable GDN0 (for non-evanescent k) result in the wavenum-
ber domain. The encouraging fact is that, the smaller the iteration step ∆z, the more smooth GDN0 .
This means that:

1. GDN0 is a well defined smooth function in the non-evanescent region. And the non-evanescent
ks are the only part of the spectrum we should apply on data due to noise.

2. The evanescent part of GDN0 is also used for the input boundary conditions, it will not cause
instability issue for the calculation of the non-evanescent part of GDN0 .

The issue for this approach is the computational cost. For the model we tested, it is very costly
to reach a converging solution. Another approach, aiming at higher-order of accuracy rather than
smaller ∆z size, is proposed as below. In this approach, the lateral variation of the velocity field
is expressed as a continuous Fourier transform, rather than a discrete Fourier sum to single out the
current wavefield P̃ (k, z′) which is essential for the completeness of a discretized 1D Helmholtz
equation. The content of this new approach can also be formulated in terms discrete Fourier sum,
but it is much shorter and cleaner in a continuous form. First we again consider solving the problem
in a region sufficiently thin that the vertical variation can be ignored,

(
∂2

∂x′2
+

∂2

∂z′2
+

ω2

c2(x′)

)
P (x′, z′) = 0. (34)

It can be transformed into the wavenumber k domain with the following Fourier transform6:
∞∫
−∞

e−ikx′dx′,

6The Fourier transform for the product of 1
c2(x)

and P (x′, z′) is a convolution in the k domain. In our case: 1
c2(x′) =

1
2π

∞R
−∞

eA(k)eikx
′
dk, and P (x′, z′) = 1

2π

∞R
−∞

eP (k, z′)eikx
′
dk. We have

∞R
−∞

P (x′,z′)
c2(x′) e

ikx′
= 1

2π

∞R
−∞

eA(λ) eP (k−λ, z′).
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(
∂2

∂z′2
− k2

)
P̃ (k, z′) = −ω

2

2π

∞∫
−∞

Ã(λ)P̃ (k − λ, z′)dλ. (35)

∂2

∂z′2
P̃ (k, z′) =

∞∫
−∞

(
k2δ(λ)− ω2Ã(λ)

2π

)
P̃ (k − λ, z′)dλ. (36)

If we define: B̃(k, λ) ≡ ω2Ã(λ)− 2πk2δ(λ), we have,

∂2

∂z′2
P̃ (k, z′) = − 1

2π

∞∫
−∞

B̃(k, λ)P̃ (k − λ, z′)dλ. (37)

Taking the ∂2/∂z′2 operation on the equation above, we can calculate the fourth-order deriva-
tive:

∂4

∂z′4
P̃ (k, z′) = − 1

2π

∞∫
−∞

B̃(k, λ)
∂2P̃ (k − λ, z′)

∂z′2
dλ

= − 1
2π

∞∫
−∞

B̃(k, λ)

− 1
2π

∞∫
−∞

B̃(k − λ, µ)P̃ (k − λ− µ, z′)dµ
 dλ

=
1

2π

∞∫
−∞

P̃ (k − λ, z′)B̃(2)(k, λ),

(38)

where B̃(2)(k, λ) = 1
2π

∞∫
−∞

B̃(k, µ)B̃(k − µ, λ − µ)dµ. Taking the ∂2/∂z′2 operation on the

equation above, we can calculate the sixth-order derivative:

∂6

∂z′6
P̃ (k, z′) =

1
2π

∞∫
−∞

B̃2(k, λ)
∂2P̃ (k − λ, z′)

∂z′2
dλ

=
1

2π

∞∫
−∞

B̃2(k, λ)

− 1
2π

∞∫
−∞

B̃(k − λ, µ)P̃ (k − λ− µ, z′)dµ
 dλ

= − 1
2π

∞∫
−∞

P̃ (k − λ)B̃(3)(k, λ),

(39)

where B̃(3)(k, λ) = 1
2π

∞∫
−∞

B̃(2)(k, µ)B̃(k − µ, λ − µ)dµ. We have obtained all even order

derivatives of P̃ (k, z′) with respect to z′. Note that these partial derivatives are computed from the
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wavefield P̃ on the same boundary location z′, in other words, conviently available from the known
boundary conditions. To reconstruct the precise value of P̃ (k, z′ + ∆z), we still need the odd order
derivatives, that can be provided by P̃z(k, z′) which in our notation means:

P̃z(k, z′) ≡ ∂P̃ (k, z′)
∂z′

. (40)

The first-order variation is provided by the normal derivative on the boundry z′:

∂P̃ (k, z′)
∂z′

= P̃z(k, z′). (41)

And all other odd-order derivatives can be computed from the normal derivative P̃z(k, z′) at the
boundary as well,

∂2m+1

∂z′2m+1
P̃ (k, z′) =

∂

∂z′
∂2m

∂z′2m
P̃ (k, z′)

=
∂

∂z′

(−1)m

2π

∞∫
−∞

B̃(2m)(k, λ)P̃ (k − λ, z′)dλ


=
(−1)m

2π

 ∞∫
−∞

B̃(2m)(k, λ)P̃z(k − λ, z′)dλ
 .

(42)

With derivatives of every order available, we can calculate P̃ (k, z′+ ∆z) using a Taylor expan-
sion,

P̃ (k, z′ + ∆z) = P̃ (k, z′) +
∞∑
m=1

∂mP̃ (k, z′)
∂z′m

(∆z)m

m!

= P̃ (k, z′) + P̃z(k, z′)∆z

+
∞∑
m=1

(−1)m

2π
(∆z)2m

(2m)!

∞∫
−∞

B̃(m)(k, λ)P̃ (k − λ, z′)dλ

+
∞∑
m=1

(−1)m

2π
(∆z)2m+1

(2m+ 1)!

∞∫
−∞

B̃(m)(k, λ)P̃z(k − λ, z′)dλ,

(43)

where B̃(1) is used to denote B̃(1)(k, λ) ≡ B̃(k, λ).

With equation (43) and the benefit from smaller step size ∆z, we can predict the wavefield at
another depth z′ + ∆z with high precision through an interval with thickness ∆z with no vertical
variation of medium properties. Since the prediction is an activity under our control we can choose
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the size of ∆z to match the actual geology. The normal derivative of P̃ should also be predicted in
order to provide a sufficient boundary condition for the next step prediction7:

P̃z(k, z′ + ∆z) = P̃z(k, z′)

+
∞∑
m=1

(−1)m

2π
(∆z)2m−1

(2m− 1)!

∞∫
−∞

B̃(m)(k, λ)P̃ (k − λ, z′)dλ

+
∞∑
m=1

(−1)m

2π
(∆z)2m

(2m)!

∞∫
−∞

B̃(m)(k, λ)P̃z(k − λ, z′)dλ,

(44)

8 Numerical example

The experiment in this article is designed for an easy verification of the effectiveness of wavefield
prediction in a laterally varying medium. The geological model, shown in Figure 5, is symmetrical
in the z-direction in terms of a fifty-meter-thick laterally heterogeneous region at depth 475m. The
sources are located at 0m depth, with receiver line at 2.5m. Our plan is to predict an experiment at
depth that is exactly symmetrical with the original experiment. And our input data can be used to
check the quality of our work and the effectiveness of the procedure.

Fourth order finite difference scheme published in Alford et al. (1974) is used to generate the
data. The source signature is the first derivative of a Gaussian function. The detail of the experiment
is shown in Figure 3.

Inside the 50(m) layer with lateral variation, there is no vertical variation. The lateral velocity
variation in this layer is:

1
c2(x)

=
(

1
1500

)2

− 1
9250

1

2
√
π104

e−x
2/(4×104).

Consequently, the lateral variation of 1
c2(x)

can be approximately expressed in the wavenumber
(k) domain as a smooth Gaussian distribution:

∞∫
−∞

dx
eikx

c2(x)
=

2πδ(k)
15002

− 1
9250

e−104k2
.

A typical shot gather is shown in Figure 4.

9 Conclusions

We have proposed a stable and accurate scheme to compute the Green’s function with vanishing
Dirichlet and Neumann boundary conditions (GDN0 ) for a medium with lateral variation. After the

7It can be achieved by taking the ∂
∂(∆z)

operation on equation (43).
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Figure 3: Grid configuration

computation of GDN0 , we implemented the first the Claerbout III imaging condition for two-way
waves for a laterally-varying medium. This article proposes a stable computational framework in
the frequency-wavenumber domain to predict wavefield at depth using the measurements on top
without modification to the wave equation or approximation to the dispersion relation. The explicit
solution in this article for the Helmholtz equation using both Dirichlet and Neumann boundary
conditions from only one side, is very different from the most popular implicit schemes using either
Dirichlet or Neumann condition everywhere on the boundary around the unknown region.
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Figure 5: The geological model.
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A clear example of using multiples to enhance and improve imaging

Chao Ma & Arthur B. Weglein

Abstract

In this report, we use a 1D prestack example to examine the use of multiples to obtain an
approximate image of an unrecorded primary. Following those who have pioneered, devel-
oped and applied this concept (see e.g., Berkhout and Verschuur (1994); Guitton (2002); Shan
(2003); Muijs et al. (2007) and Whitmore et al. (2010)), we adopt the imaging condition of
space-and-time coincidence of upgoing and downgoing waves (Claerbout, 1971) (referred to as
Claerbout’s imaging condition II in Weglein (2015)). The result shows that the approximate
image of an unrecorded primary can be used to augment and enhance subsurface imaging when
there is inadequate or insufficient recording of primaries.

1 Introduction

Imaging and migration concept began with an intent in taking an event or a time section and deter-
mining the spatial location of the reflector (and the reflection point) that generated that event. For
example, Claerbout (1971) introduces the reflector mapping principle: “reflectors exist at points in
the ground where the first arrival of the downgoing wave is time coincident with an upgoing wave”.
The reflector mapping principle for a single shot can be expressed by

Map(x, z) = U(x, z, td)/D(x, z, td), (1)

where x and z are horizontal and vertical coordinates, respectively; td is the time of the first arrival
on the downgoing wave d(x, z, t). Figure 11 illustrates the basic principle of reflector mapping.
There will be overlap in time of the downgoing (D) and upgoing waves (U ) at a point which is at
or near a reflector (e.g., point P2 in Figure 1). That time overlap can be used in the construction of
a map of reflection positions. Another map formular which derived from equation 1 is

Map(x, z) =
∫
U(x, z, ω)D∗(x, z, ω)dω. (2)

As discussed in Claerbout (1971), because the practical schemes will have no knowledge of the
interface, there will be an erroeous2 upgoing wave U3 at P3 (indicated by dots before the arrival of
the downgoing wave) and that error has no bad effect (no overlap in time) on the reflector mapping
formulas which utilize time coincidence of upgoing and downgoing waves. However, there could
be an overlap in time at P3 between the downgoing and upgoing waves if a multiple, which arrives
latter than a primary, is present in the upgoing wave. Therefore, multiple removal (e.g., Carvalho
et al. (1991), Verschuur et al. (1992), Araujo et al. (1994); and Weglein et al. (1997)) is required
before imaging.

However, whereas imaging requires only primaries, circumstances exist in which the extent,
sampling and acquisition of primaries is incomplete and less than adequate to achieve imaging

1Adapted from Claerbout (1971).
2In principle, there is no upgoing wave U below the reflector at the point P3.
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Figure 1: Illustration of the basic principle of reflector mapping. Figure adapted from Claerbout
(1971).

objectives. Researchers (e.g., Berkhout and Verschuur (1994); Guitton (2002); Shan (2003); Muijs
et al. (2007); Whitmore et al. (2010); Lu et al. (2011) and Valenciano et al. (2014)) seeking methods
that use multiples to extract an approximate image of an unrecorded primary were influenced and
inspired by the Claerbout imaging condition II (designated for imaging primaries) to consider the
space-and-time coincidence of other events for different useful purposes. The example in Figure 2
illustrates one way that such a method has been realized.

For the purpose of using a multiple to find an approximate image of an unrecorded primary,
we consider the field U (in equation 2) as the source-and-receiver deghosted first-order multiple
(represented by the black-red-yellow line in Figure 2), and the field D as the source-deghosted, but
the receiver ghost of the primary (represented by the black line in Figure 2) that is a subevent of
a recorded multiple. That interpretation of equation 2, with that input D and U , will produce an
appropriate image of the unrecorded subevent of the multiple (see Weglein (2015) for more details).

Figure 2: Imaging of an unrecorded primary that extracted from a recorded multiple. Figure adapted
from Weglein (2015).
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Methods that seek to use a multiple to produce an approximate image of an unrecorded primary
also require a velocity model for wavefield propagation. That in turn requires a step in which
multiples are first removed. Therefore, the recent interest in (and approaches for) using a multiple
to provide an approximate primary depend on an effective removal of multiples before the method
starts.

Within that understanding, we use a 1D prestack example to examine the imaging result of an
unrecorded primary that we can extracted from multiples following Claerbout’s imaging condition
II. Within that understanding, we use a 1D prestack example to examine the imaging result of an
unrecorded primary that we can extracted from multiples.

2 Prestack image enhancement by imaging an unrecorded primary extracted from
a multiple

In this section, we first provide a 1D prestack numerical example, based on a one horizontal reflector
model, to examine the result of approximately imaging an unrecorded primary extracted from a
recorded multiple. The image results are obtained by the following equation3:

Map(x, z) =
∫
U(x, z, t)D(x, z, t)dt. (3)

Figure 3: A test model for a case of a single horizontal reflector.

The test data are generated from a model that contains one horizontal reflector (Figure 3). In
imaging the recorded primary (Figure 4a), the downgoing wavefield that is being forward propa-
gated is the source wavefield, and the upgoing wavefield that is being backward propagated is the

3This is the Equation 5 in Claerbout (1971), we provide a derivation of this equation from equation 2 in the Appendix.
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primary. In imaging the unrecorded primary (Figure 4b), the downgoing wavefield that is being for-
ward propagated is the receiver-side ghost of the primary, and the upgoing wavefield that is being
backward propagated is the source-receiver-side-deghosted first-order free-surface multiple.

(a) (b)

Figure 4: 4a:result from imaging a primary following Claerbout’s imaging condition II, 4b: result
from imaging an extracted primary from a first-order free-surface multiple following Claerbout’s
imaging condition II.

Comparing the result in Figure 4a with the result in Figure 4b, we note that the reflector is
correctly imaged in both results. However, the image from the unrecorded primary (extracted from
a multiple) shows broader illumination (with smaller image amplitude) compared with the image
from the recorded primary (see Weglein (2015) for analysis in amplitude difference).

It is important to point out that in obtaining the result of Figure 4b in this synthetic example, we
purposefully chose the receiver-side ghost of the primary and the source-receiver-side-deghosted
first-order free-surface multiple as the down-going (D) and up-going (U) wavefields, respectively.
Methods that seek to obtain an approximate image of an unrecorded primary require an effective
up-down wavefield separation, which can be achieved by modern seismic acquisition techniques
(e.g., GeoStreamer or over/under cable). Notice that, among different combinations between the
downgoing and upgoing events, cross-talk artifacts can happen (e.g., Liu et al. (2011), Lu et al.
(2011)).

Next, we will use a two-reflector model to examine the use of multiple to provide an approximate
image of a deeper reflector. Figure 5 shows the two-reflector model. To use multiple to obtain the
approximate image of the second-reflector (see Figure 7b), the downgoing wavefield is receiver-
side ghost of the first primary (represented by the blue line in Figure 5) and the upgoing wavefield is
source-and-receiver-side deghosted first-order free-surface multiple with the two upward reflections
at the first and second reflector (represented by the blue line and the green line in Figure 5). The
velocity model we use is a discontinous velocity shown in Figure 6. For the purpose of comparison,
we provide the imaging result from migrating the primary corresponding to the deeper reflector in
Figure 7a.

The reason is the prediction of an events as a multiple depends on having the subevents of
the multiple recorded. Since the problem being addressed by definition has unrecorded primaries,
multiples with unrecorded primary subevents cannot be identified as a multiple. To address that
issue in practice the entire data set is input where on one side primaries belong and on the other side
multiples are called for.
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Figure 5: A test model for the case of two horizontal reflector and a free-surface. The first and the
second reflector are at depth 110 m and 175 m, repsectively. The blue line represents the downgoing
wavefield and the blue line and the green line represents the upgoing wavefield.

Figure 6: A discontinuous velocity model used to propagate the wavefield. There is one reflector at
110 m, the velocities are 1500 m/s and 3000 m/s above and below the reflector, respectively.

(a) (b)

Figure 7: Figure on the left is Figure 7a and Figure on the right is Figure 7b. Notice antifacts in
both cases due to the discontinuous velocity and limited model.
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There are circumstances where the benefit derived from the enhanced imaging greatly outweighs
the deficit of false event prediction (e.g., Valenciano et al. (2014) and Weglein (2014)).

3 Conclusions

In this paper, we provide a very clear example of how multiples can (at times) be used to provide
an approximate image of an unrecorded primary. That approximate image, taken together with
the images from recorded primaries, can enhance and provide added-value from imaging recorded
primaries and approximate unrecorded primaries. However, there are artifacts (e.g., unwanted cross-
talk) in the real applications that use multiples to improve subsurface imaging. Therefore, this
procedure needs to be judiciously implemented in real-world applications. Whitmore et al. (2010);
Lu et al. (2011); Valenciano et al. (2014) and Weglein (2014) showed several convincing field-data
examples that illustrated considerable added value from using multiples to enhance imaging.

The Claerbout’s imaging condition II allowed/encouraged the consideration of the space-and-
time-coincidence idea for different upgoing and downgoing wavefields (in addition to the uses that
the original imaging concept was intended) in an interpretation to provide added value for using
multiples to approximate the image of an unrecorded primary. There are numerous examples that
show significant benefit for imaging from this procedure, and where that benefit outweighs any
issues caused by artifacts.
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5 Appendix

We provide a derivation of equation 3 from equation 2.

Consider
U(x, z, ω) =

∫
U(x, z, t)eiωtdt, (4)

and
D∗(x, z, ω) =

∫
D(x, z, u)e−iωudu. (5)

Substitude equations 4 and 5 into equation 2,

Map(x, z) =
∫ ∫ ∫

U(x, z, t)D(x, z, u)eiω(t−u)dtdudω, (6)

Set t− u = τ ,

Map(x, z) =
∫ ∫ ∫

U(x, z, t)D(x, z, t− τ)eiωτdtdτdω

=
∫ ∫

U(x, z, t)D(x, z, t− τ)dtdτ
∫
eiωτdω

=
∫ ∫

U(x, z, t)D(x, z, t− τ)dtdτδ(τ)

=
∫
U(x, z, t)D(x, z, t)dt (7)
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A clear example of using multiples to enhance and improve imaging
Chao Ma ∗ and Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

In this paper, we use a 1D prestack example to examine
the use of multiples to obtain an approximate image of an
unrecorded primary. We employ the imaging condition of
space-and-time coincidence of upgoing and downgoing waves
Claerbout (1971) (referred to as Claerbout’s imaging condition
II in Weglein (2015)). The result shows that the approximate
image of an unrecorded primary (extracted from a recorded
multiple) can be used to augment and enhance subsurface
imaging when there is inadequate or insufficient recording of
primaries.

INTRODUCTION

In Claerbout’s imaging condition II (i.e., space-and-time
coincidence of upgoing and downgoing waves), the source
wavefield is forward propagated to the subsurface and the
receiver wavefield is backward propagated to the subsurface.
The imaging result is obtained by deconvolution via equation
1 (or cross-correlation, via equation 2) imaging condition (e.g.,
Claerbout (1971), Whitmore et al. (2010)):

I(~x) =
∑
~xs

∑
ω

U(~x,~xs,ω)
D(~x,~xs,ω)

, (1)

I(~x) =
∑
~xs

∑
ω

D∗(~x,~xs,ω)U(~x,~xs,ω). (2)

In equation 1 (and equation 2), D(~x,~xs,ω) and U(~x,~xs,ω)
represent downgoing and upgoing wavefields, respectively,
and ∗ in equation 2 represents the complex conjugate.

Claerbout’s imaging condition II assumes that the data consist
of primaries. Hence, multiples need to be removed prior to
imaging (see e.g., Carvalho et al. (1991), Verschuur et al.
(1992), Araujo et al. (1994); and Weglein et al. (1997)).
Claerbout’s imaging condition II also requires a velocity model
for wavefield propagation, and velocity-analysis methods
assume that multiples have been removed.

However, whereas imaging requires only primaries,
circumstances exist in which the extent, sampling and
acquisition of primaries is incomplete and less than adequate
to achieve imaging objectives. Researchers (e.g., Berkhout
and Verschuur (1994); Guitton (2002); Shan (2003); Muijs
et al. (2007); Whitmore et al. (2010); Lu et al. (2011) and
Valenciano et al. (2014)) seeking methods that use multiples
to extract an approximate image of an unrecorded primary
were influenced and inspired by the Claerbout imaging
condition II (designged for imaging primaries) to consider
the space-and-time coincidence of other events for different
useful purposes. The example in Figure 1 illustrates one way
that such an extension has been realized.

For the purpose of using a multiple to find an approximate
image of an unrecorded primary, we consider the field U
(in equation 1 or 2) as the source-and-receiver deghosted
first-order multiple, and the field D as the source-deghosted,
but the receiver ghost of the primary that is a subevent of a
recorded multiple. That interpretation of equations 1 and 2,
with that input D and U , will produce an appropriate image of
the unrecorded subevent of the multiple (see Weglein (2015)
for more details).

Figure 1: Imaging of an unrecorded primary that extracted
from a recorded multiple. Figure adapted from Weglein
(2015).

Methods that seek to use a multiple to produce an approximate
image of an unrecorded primary also require a velocity model
for wavefield propagation. That in turn requires a step in
which multiples are first removed. Therefore, the recent
interest in (and approaches for) using a multiple to provide
an approximate primary depend on an effective removal of
multiples before the method starts.

Within that understanding, we use a 1D prestack example to
examine the imaging result of an unrecorded primary that we
can extracted from multiples following Claerbout’s imaging
condition II (i.e., equation 2). We compare that result with the
image results obtained from the recorded primaries, following
that same Claerbout’s imaging condition.

PRESTACK IMAGE ENHANCEMENT BY IMAGING
AN UNRECORDED PRIMARY EXTRACTED FROM A
MULTIPLE

In this section, we provide a 1D prestack numerical example
to examine the result of approximately imaging an unrecorded
primary extracted from a recorded multiple. Multiples can
be useful for extracting an unrecorded primary’s image and
thereby for enhancing the subsurface image.

The test data are generated from a model that contains one
horizontal reflector (Figure 2). In imaging the recorded
primary (Figure 3a), the downgoing wavefield that is being
forward propagated is the source wavefield, and the upgoing
wavefield that is being backward propagated is the primary. In
imaging the unrecorded primary (Figure 3b), the downgoing
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Figure 2: A test model for a case of a single horizontal
reflector.

Figure 3a: Result from imaging a primary following
Claerbout’s imaging condition II.

wavefield that is being forward propagated is the receiver-side
ghost of the primary, and the upgoing wavefield that is being
backward propagated is the source-receiver-side-deghosted
first-order free-surface multiple.

Comparing the result in Figure 3a with the result in Figure
3b, we note that the reflector is correctly imaged in both
results. However, the image from the unrecorded primary
(extracted from a multiple) shows broader illumination (with
smaller image amplitude) compared with the image from
the recorded primary (see Weglein (2015) for analysis in
amplitude difference).

It is important to point out that in obtaining the result
of Figure 3b in this synthetic example, we purposefully
chose the receiver-side ghost of the primary and the
source-receiver-side-deghosted first-order free-surface
multiple as the down-going (D) and up-going (U) wavefields,
respectively. Methods that seek to obtain an approximate
image of an unrecorded primary require an effective
up-down wavefield separation, which can be achieved by
modern seismic acquisition techniques (e.g., GeoStreamer or
over/under cable). Notice that, among different combinations

Figure 3b: Result from imaging an extracted primary from a
first-order free-surface multiple following Claerbout’s imaging
condition II.

between the downgoing and upgoing events, cross-talk
artifacts can happen (e.g., Liu et al. (2011), Lu et al. (2011)).

The reason is the prediction of an events as a multiple depends
on having the subevents of the multiple recorded. Since
the problem being addressed by definition has unrecorded
primaries, multiples with unrecorded primary subevents
cannot be identified as a multiple. To address that issue in
practice the entire data set is input where on one side primaries
belong and on the other side multiples are called for.

There are circumstances where the benefit derived from the
enhanced imaging greatly overweights the deficit of false event
prediction (e.g., Valenciano et al. (2014) and Weglein (2014)).

CONCLUSIONS

Following Claerbout’s imaging condition II, multiples can
be used to extract the image of unrecorded primaries and
thereby to complement the subsurface imaging results in
the case in which the recording of primaries is inadequate.
However, there are artifacts (e.g., unwanted cross-talk)
in the real applications that use multiples to improve
subsurface imaging. Therefore, this procedure needs to be
judiciously implemented in real-world applications. Whitmore
et al. (2010); Lu et al. (2011); Valenciano et al. (2014)
and Weglein (2014) showed several convincing field-data
examples that illustrated considerable added value from using
multiples to enhance imaging. The Claerbout’s imaging
condition II allowed/encouraged the consideration of the
space-and-time-coincidence idea for different upgoing and
downgoing wavefields (in addition to the uses that the original
imaging concept was intended) in an interpretation to provide
added value for using multiples to approximate the image of an
unrecorded primary. There are numerous examples that show
significant benefit for imaging from this procedure, and where
that benefit outweighs any issues caused by artifacts.
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A clear example of using multiples to enhance and improve 

imaging: a comparison of two imaging conditions that are 

relevant to this analysis  

Chao Ma
1
 and Yanglei Zou

1 

1
M-OSRP/Department of Physics/University of Houston 

Abstract 

In this paper, we use a 1D pre-stack example to examine the use of multiples to obtain an 

approximate image of an unrecorded primary by using the space-and-time coincidence of 

upgoing and downgoing waves (Claerbout, 1971) (referred to as Claerbout’s imaging condition 

II in Weglein, 2015). The result shows that the image of an unrecorded primary (extracted from a 

recorded multiple) can be used to augment and enhance subsurface imaging from recorded 

primaries, when there is inadequate or insufficient acquisition of primaries. In addition, we 

carefully examine and analyze imaging results from two different and classic imaging conditions: 

(1) the predicted coincident-source-and-receiver experiment at depth, at time equals zero 

(referred to as Claerbout’s imaging condition III in Weglein, 2015), and (2) Claerbout’s imaging 

condition II. The result of that comparison represents the advantages of Claerbout’s imaging 

condition III over Claerbout’s imaging condition II in terms of image definitiveness and 

amplitude analysis. However, an adaptation that is motivated and inspired by Claerbout’s 

imaging condition II can be used to improve imaging results, by providing an approximate image 
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of an unrecorded primary subevent of a recorded multiple. We provide a clear example of that 

method and the added value for imaging that it can represent. 

Introduction  

In Claerbout’s imaging condition II (Claerbout, 1971), the source wavefield is forward 

propagated to the subsurface and the receiver wavefield is backward propagated to the 

subsurface. The imaging result is obtained by deconvolution via equation 1 (or cross-correlation, 

via equation (2)) in accord with the imaging condition (i.e., with the space-and-time coincidence 

of upgoing and downgoing waves):  

                                       
( , ; )

( )
( , ; )

s

s

x s

U x x
I x

D x x




                                                      (1) 

                                         *( ) , ; , ; .
s

s s

x

I x D x x U x x


                                     (2) 

In equation 1 and equation 2, ( , ; )sD x x   and ( , ; )sU x x   represent down-going and up-going 

wavefields, respectively, and ∗ represents the complex conjugate.  

Claerbout’s imaging condition II assumes that the data consist of primaries. Hence, multiples 

need to be removed prior to imaging. However, whereas imaging requires only primaries, 

circumstances exist in which the extant, sampling and acquisition of primaries is incomplete and 

less than adequate to achieve imaging objectives. Researchers (see e.g., Muijs et al, 2007; 

Whitmore et al., 2010) seeking methods to use multiples to extract an approximate image of an 

unrecorded primary, were influenced and inspired by the Claerbout imaging condition II 

(designed for imaging primaries) to consider the space-and-time coincidence for other useful 

purposes. The example below illustrates one way that such an extension has been realized.  
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For the purpose of using a multiple to find an approximate image of an unrecorded primary, we 

consider the field U (in equation 1 or 2) as the source-and-receiver deghosted first-order multiple 

and the field D as the source-deghosted, but the receiver ghost of the primary that is a recorded 

subevent of the multiple. That interpretation of equations 1 and 2, with that input D and U, will 

produce an appropriate image of the unrecorded subevent of the multiple (see Weglein (2015) for 

more details). 

Methods that seek to use a multiple to produce an approximate image of an unrecorded primary 

require a velocity model. That in turn requires a step in which multiples are first removed. 

Therefore, the recent interest in (and approaches for) using a multiple to provide an approximate 

image of an unrecorded primary depend on an effective removal of multiples before the method 

starts. Within that understanding, in this paper, we use a 1D pre-stack example to examine the 

image result of an unrecorded primary using Claerbout’s imaging condition II (i.e., equation 1). 

We compare that result with the images obtained from the recorded primaries using that same 

Claerbout imaging condition II.  

Furthermore, we will compare the results of imaging primaries obtained by two different 

imaging conditions (i.e., Claerbout’s imaging condition II and Claerbout’s imaging condition III). 

Claerbout’s imaging condition III was first introduced by Claerbout (1971) for predicting the 

coincident-source-and-receiver experiment at depth, at time equals zero. Claerbout’s imaging 

condition III predicts a physical experiment with both source and receiver at depth, and thereby 

allows it to provide the imaging definitiveness that Claerbout’s imaging condition II cannot 

provide. On the other hand, the idea behind Claerbout’s imaging condition II has inspired and 

influenced researchers to use multiples to provide an approximate image of an unrecorded 
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primary. That is an advantage of Claerbout’s imaging condition II over Claerbout’s imaging 

condition III. 

Prestack image enhancement by imaging an unrecorded primary  

In this section, we provide a 1D prestack numerical example that allows us to examine of how 

multiples can be used to provide an approximate image of an unrecorded primary, thereby 

enhance the subsurface image. 

The test data are generated from a model that contains one horizontal reflector (see Figure 1).  In 

imaging the recorded primary (Figure 2), the down-going wavefield that is being forward 

propagated is the source wavefield, and the up-going wavefield that is being backward 

propagated is the primary. In imaging the unrecorded primary (Figure 3), the down-going 

wavefield that is being forward propagated is the receiver-side ghost of the primary, and the up-

going wavefield that is being backward propagated  is the source-receiver-side-deghosted first-

order free-surface multiple. Comparing the result in Figure 2 with the result in Figure 3, we note 

that the reflector is correctly imaged in both results. However, the image from the unrecorded 

primary shows broader illumination compared with the image from the recorded primaries only. 

It is important to point out that in obtaining the result of Figure 3 in this synthetic example, we 

purposefully chose the receiver-side ghost of the primary and the source-receiver-side-

deghosted first-order free-surface multiple as the down-going (𝐷) and up-going (𝑈) 

wavefields, respectively. Methods that seek to obtain an approximate image of an unrecorded 

primary require an effective up-down wavefield separation, which can be achieved by modern 

seismic acquisition techniques (e.g., GeoStreamer or over/under cable). Notice that, among 
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different combinations between the downgoing and upgoing events, cross-talk artifacts can 

happen. 

A 1D prestack example and the differences between Claerbout’s Imaging 

Conditions II and III 

Claerbout’s Imaging Condition III (i.e., the predicted coincident-source-and-receiver experiment 

at depth, at time equals zero) is the definition of wave-equation migration. Claerbout’s Imaging 

Condition II is not equivalent to Claerbout’s Imaging Condition III in any situation beyond 1D 

normal incidence or zero-offset data.  

In this section, we will show the images generated by Reverse Time Migration (Claerbout’s 

Imaging Condition II) and Stolt migration, as given in equation 3 (Claerbout’s Imaging 

Condition III for a one-way wave) for a single horizontal reflector 

                             
 

 

( ( ))( ( ))

3

1
,

2

( , ; )

gz gx gsz sx s
i k z k x xi k z k x xStolt

sx gx

i t

g s g s

I x z d dk e dk e

dx dx dt e D x x t




   
   



(3) 

Figure 1 shows the one-reflector model that we used for this test. Figure 4 is the image generated 

by Reverse Time Migration with a single shot gathers (one source); we observe that there is a 

blur on the image and there are artifacts generated by the limited aperture. In practice, a sum 

over all sources is taken with the assumption that the blur and artifacts will go away. However, 

summing over all sources does not have a clear physical meaning, there is no guarantee that all 

of the blur and artifacts will disappear. The point we want to make here is that summing over all 

sources does not have a clear physical meaning and it is no guaranteed that all of the blur and 

artifacts will disappear.  
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Figure 5 is the image generated by Stolt migration. We can see that the image is flat and has few 

artifacts. Notice that the exact same data were used in this comparisons of Claerbout II and 

Claerbout III, indicating their intrinsic and substantive differences even in the simplest 

circumstances. As pointed out in Weglein (2015) the differences are much more serious when 

the target is complicated and imaging through and beneath a region with rapidly changing 

velocity. More importantly, every step in Stolt migration has a clear physical meaning. Thus we 

can readily obtain interpretable amplitude information, such as angle-dependent reflection 

coefficient, from Stolt migration. 

Conclusion 

In this paper, we provide a very clear example of how multiples can (at times) be used to provide 

an approximate image of an unrecorded primary, that, taken together with the images from 

recorded primaries, can enhance and provide added-value from imaging recorded primaries and 

approximate unrecorded primaries. However, there are artifacts (e.g., unwanted cross-talk) in the 

real-world applications that use multiples to improve subsurface imaging. Therefore, this 

procedure needs to be judiciously implemented in real applications to provide added values. For 

example, Whitmore et al. (2010) and Valenciano et al. (2014) showed several convincing 

examples with considerable added value from this method to enhance imaging. Comparison of 

the imaging results of primaries following two different imaging conditions (Claerbout’s 

imaging condition II and III) demonstrates the superiority of Claerbout’s imaging condition III 

over Claerbout’s imaging condition II in terms of the definitiveness and consistency of the image.  

The Claerbout’s imaging condition II allowed/encouraged the consideration of the space-and-

time-coincidence idea for different upgoing and downgoing wavefields (in addition to the uses 

for which the original imaging concept was intended). Such an extension could provide added 
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value for using multiples to approximate the image of an unrecorded primary. The latter 

advantage is not available in the more definitive Claerbout imaging condition III. 
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Figure 1, A one horizontal reflector test model. 
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Figure 2, Imaging result by imaging a primary following Claerbout imaging condition II. 

  

Figure 3, Imaging result by imaging an extracted primary from a first-order free-surface multiple 

following Claerbout imaging condition II 
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Figur 4, image result (one shot gather) following Claerbout imaging conidtion II. The figure 

below is zoom of the figure above. The Claerbout II image shows an inconsistent amplitude and 

shape of the image along the single reflector. 
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Figure 5, image result following Claerbout imaging conidtion III. The figure below is zoom of 

the figure above. The Claerbout III image in this figure shows an amplitude and shape consistent 

image. The exact same data was used in the simplest 1D earth prestack Claerbout II and 

Claerbout III tests and comparisons, indicating their intrinsic and substantive differences even in 

the simplest circumstances. As pointed out in Weglein (2015) the differences are much more 

serious when the target is complicated and imaging through and beneath a rapidly changing 

velocity. 
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Multiple removal: open issues, pressing challenges and recent progress towards providing
the next and higher level of required capability
Arthur B. Weglein, M-OSRP, Physics Department, University of Houston

SUMMARY

This paper provides: (1) a brief overview of the current status
of multiple attenuation in the petroleum industry; (2) recent
progress for marine and on-shore plays; (3) open issues and
pressing challenges and (4) a plan to address those high prior-
ity challenges and recent progress towards that goal.

INTRODUCTION

The demand for new and improved capability in removing mul-
tiples is driven by the portfolio of the petroleum industry and
by current and anticipated future exploration trends. For ex-
ample, the industry moved to deep water roughly 30 years
ago. With that move, highly effective multiple-removal meth-
ods that were being applied industry-wide suddenly bumped
up against their statistical assumptions, when applied to deep
water plays, and failed.

Since then, the overall industry trend to explore in progres-
sively more complex and remote areas, with ill-defined and
difficult-to-estimate subsurface properties motivates the search
for capabilities that will not require subsurface information.
Methods for multiple removal that require various forms of
subsurface information include, e.g., stacking, F-K and Radon
filters, and Feedback demultiple methods.

The inverse scattering series provides the opportunity to achieve
all processing objectives directly and without subsurface infor-
mation. The current inverse-scattering-series (ISS) internal-
multiple-attenuation algorithm has a unique capability to pre-
dict the exact phase (time) and approximate amplitude of all
internal multiples, at once, automatically, and without subsur-
face information. These properties separate the ISS internal-
multiple-attenuation algorithm from all other methods, and make
it the high-water mark of current internal-multiple effective-
ness. That is, those ISS properties and strengths are what all
other current demultiple methods (e.g., Feedback loop meth-
ods, modeling and subtracting multiples, and filter methods)
do not possess (e.g., Hung et al. (2014); Kelamis et al. (2013a);
Luo et al. (2011); Ferreira (2011)).

Carvalho (1992), Carvalho and Weglein (1994), Araújo (1994),
Araújo et al. (1994), Weglein et al. (1997), and Weglein et al.
(2003) developed ISS free-surface-multiple elimination algo-
rithms and internal-multiple attenuation algorithms. Field-data
applications demonstrated their effectiveness. Several marine
and onshore data examples are noted below.

However, at every period in the history of E&P, the arrival
of new capability to address the latest set of challenges has
encouraged industry to explore in yet more difficult circum-
stances — situations never previously imagined, let alone con-
sidered, and beyond current capability to accommodate. That
will once again demand a new and fundamentally higher level
of capability and effectiveness. In this article, we describe how
that’s the state of affairs for multiple attenuation today.

The petroleum industry’s current worldwide portfolio of both
conventional and unconventional onshore plays, and of increas-
ingly complex offshore plays — with new and unforeseen chal-
lenges — has returned and rejuvenated an interest in multi-
ple removal (and a demand for substantially increased effec-
tiveness). We will see why multiple removal interest (and
research) has come back to center stage for the petroleum-
industry.

MARINE

Early marine field-data examples of the promise and delivery
of ISS free-surface-multiple and internal-multiple algorithms
can be found in the above-cited papers, SEG Abstracts, theses,
and, e.g., in Matson et al. (1999) and the Mississippi Canyon
data tests in Weglein et al. (2003) pages R69 and R70.

For example, those algorithms were employed on data from
offshore Brazil, and the results were reported in Ferreira (2011)
(see Figure 1). One of the conclusions in those field-data tests
at Petrobras was that “no other method was able to show simi-
lar effectiveness in attenuating the internal multiples generated
by the salt layers.”

ONSHORE

Fu et al. (2010), Terenghi et al. (2011), and Luo et al. (2011)
describe the motivation, evaluation, and comparison of differ-
ent approaches to the removal of internal multiples on com-
plex synthetic and onshore data. Fu et al. (2010) concluded
that “Their (ISS internal multiple algorithm) performance was
demonstrated with complex synthetic and challenging land field
data sets with encouraging results, where other internal multi-
ple suppression methods were unable to demonstrate similar
effectiveness.”

Goodway (2013), Goodway and Mackidd (2013), and Griffiths
et al. (2013) were among those that came to the same conclu-
sion. A paper by Kelamis et al. (2013b) presented at the Inter-
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Multiple attenuation 

Free surface multiple attenuation 
Stack before free surface multiple removal 

Figure 1a: Before free-surface-multiple removal.
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Multiple attenuation 

Free surface multiple attenuation 
Stack after free surface multiple removal 

Figure 1b: After free-surface-multiple removal.
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Multiple attenuation 

Internal multiple attenuation results  
Common offset sections 
 

Figure 1c: Common offset sections before internal-multiple
attenuation.

4 

Multiple attenuation 

Internal multiple attenuation results  
Common offset sections 
 

Figure 1d: Common offset sections after internal-multiple at-
tenuation.

national Petroleum Technology Conference in Beijing, China
was entitled “Strategies of Land Internal Multiple Elimination
based on Inverse Scattering Series.”

THE GOOD NEWS

At the 2013 post-convention SEG Internal Multiple Workshop
(Thursday, September 26, 2013) it was encouraging to see
nine of the eleven presentations describe and exemplify the
industry-wide impact and stand-alone capability (for complex
offshore and onshore plays) of the inverse-scattering-series (ISS)
internal-multiple-attenuator. ISS internal-multiple attenuation
has become fully mainstream within the petroleum industry.

THE OUTSTANDING OPEN ISSUES AND THE HIGH
PRIORITY CHALLENGES WE FACE

With all this “good news”, what could be the problem? Indus-
try’s portfolio/trend and focus today (and for the foreseeable
future) makes it clear that a large and significant gap exists
between the current challenge for the removal of free-surface
multiples and internal multiples and the collective capabilities
of the world-wide seismic exploration community (including,
of course, M-OSRP). The specific issues are that: (1) the multi-
ple generators and the subsurface properties are ill-defined and
increasingly complex and (2) too often the multiple is proxi-
mal to or interfering with the primaries. The latter serious and
significant issue can occur in many marine circumstances (e.g.,
in the North Sea, Duquet et al. (2013)) and frequently occurs
with onshore plays. That type of challenge of removing multi-
ples proximal to, and/or overlapping with, primaries (without
damaging primaries) is well beyond the collective capability
of the petroleum industry, service companies and academic re-
search groups and consortia to effectively address. It is not an
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issue that new and more complete data collection and acquisi-
tion will, by itself, be able to address. We simply don’t have
the theory and fundamental concepts in place today that are
needed for algorithm development, implementation and appli-
cation. That’s the reason we are unable to address that chal-
lenge faced today in the world-wide petroleum industry. To
adequately address the current industry challenge (proximal
and interfering multiples and primaries), we will need to be
able to predict exactly the phase and amplitude of all inter-
nal multiples and surgically remove (eliminate) the multiples
at all offsets, directly, and without subsurface information, and
without damaging primaries. No one is able to provide that
newer and necessary capability today for marine applications,
let alone for the frequently more challenging onshore plays.

There is a need for new basic concepts and fundamental the-
ory development that must begin with a frank and forthright
recognition of the problem, its economic moment and signif-
icance, and the current technical gap. New concepts, theory
and algorithms will need to be produced, and then will be fol-
lowed by addressing the practical application, implementation
and compute issues.

A PROPOSED PLAN

At the 2013 SEG International Conference (Recent Advances
and the Road Ahead Session), we proposed and described a
three-pronged strategy (please see the links below) that M-
OSRP will pursue as a direct response to that challenge. It
will have the potential to provide the necessary step-change in-
crease in capability, and thereby to respond effectively to this
current and pressing problem. Multiple removal has returned
from being viewed as a relatively mature subject and project
that helped M-OSRP “pay the rent” and is back to occupying
center stage as a major fundamental research project.

The three-pronged strategy to respond to the current open is-
sues and pressing challenges in removing multiples is as fol-
lows:
(1) Develop the ISS prerequisites for predicting the reference
wave field (wavelet and radiation pattern) and producing de-
ghosted data (in particular, for on-shore and ocean bottom ac-
quisition) that are direct, and do not require subsurface infor-
mation;
(2) Develop internal-multiple-elimination algorithms from the
inverse scattering series;
(3) Develop a replacement for the energy-minimization criteria
for adaptive subtraction, that derives from, and always aligns
with and serves, the inverse-scattering-series free-surface and
internal-multiple algorithms.
This three-pronged strategy represents a consistent and aligned
processing chain, with one single objective: providing a direct
and practical solution to the removal of all multiples, without
requiring any subsurface information, and without damaging

primaries.

The plan is first to progress and deliver items (2) and (3) for
marine applications (since item (1) is relatively mature for ma-
rine application), and simultaneously to progress item (1) for
onshore plays. Then, we will return to onshore exploration
with the full suite of (1), (2) and (3) ingredients in place. Our
plan is to progress in stages, with offshore delivery coming
before onshore delivery.

RECENT PROGRESS ON A THREE-PRONGED PLAN
TO ADDRESS CURRENT OPEN ISSUES AND CHAL-
LENGES

In discussing the second of the three prongs, that is, the up-
grade of the ISS internal multiple attenuator, we need to begin
with a review of its strengths and limitations. The first order
ISS internal multiple attenuator always attenuates all internal
multiples of first order from all reflectors at once, directly and
without subsurface information, automatically and without in-
terpretive intervention. That’s a tremendous strength, and is a
constant and holds independent of the circumstances and com-
plexity of the geology and the play. The primaries in the reflec-
tion data that enters the algorithm provides that delivery, with-
out our requiring the primaries to be identified or in any way
separated. The other events in the reflection data, that is, the
internal multiples, when they enter the first order ISS internal
multiple algorithm will alter and prep the higher order internal
multiples and thereby assist and cooperate with higher order
ISS internal multiple attenuation terms, to attenuate higher or-
der internal multiples. That’s a benefit and definite asset, and
it’s always in action and completely automatic. However, there
is a downside, a limitation. There are cases when internal mul-
tiples that enter the first order attenuator can predict spurious
or false events. That is a well-understood shortcoming of the
leading order term, when taken in isolation, but is not an issue
for the entire ISS internal multiple capability. It is anticipated
by the ISS and higher order ISS internal multiple terms exist
to precisely remove that issue of spurious event prediction, and
taken together with the first order term, no longer experiences
spurious event prediction. Chao Ma and Hong Liang provided
those higher order terms and tests with complex multiple gen-
erators show the effectiveness of their spurious removal higher
order ISS internal multiple attenuation algorithms (Liang et al.,
2013; Ma and Weglein, 2013, 2014a,b, 2015a,b). In a similar
way, there are higher order ISS internal multiple terms that
provide the elimination of internal multiples when taken to-
gether with the leading order attenuator term. Yanglei Zou has
produced a general elimination algorithm for first order inter-
nal multiples in a 1D acoustic or elastic earth. Please see Zou
and Weglein (2013), Zou and Weglein (2014a), and Zou and
Weglein (2014b, 2015a,b).

The first tests that evaluated the ability of the ISS attenuator
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to perform in inelastic media showed it maintained its effec-
tiveness in a medium where waves are attenuated and expe-
riencing Q absorption, without any need or interest in know-
ing the absorptive mechanism (Wu and Weglein, 2014b). Our
strategy includes eliminating internal multiples in an inelastic
medium without knowing the absorptive/dispersive properties
of the subsurface.

There are times, for example, in pre-salt plays in the North
Sea, the deep water Gulf of Mexico, offshore Brazil and the
Red Sea where the strategy and algorithms to eliminate inter-
nal multiples in an absorptive inelastic medium will be called
for and necessary. There are other circumstances, for example,
in certain on-shore and off-shore plays where elastic internal
multiple elimination will be sufficient.

Progress to report within our plan and strategy to provide a
next generation of multiple removal capability includes: Jing
Wu et al. (Wu and Weglein, 2014a, 2015c,d,a,b) has con-
tributed to extending off-shore Green’s theorem preprocessing
for wavelet estimation and deghosting to the on-shore elastic
wave-field separation, in preparation for on-shore ISS inter-
nal multiple attenuation/elimination. Mayhan et al. (Mayhan
et al., 2012; Mayhan and Weglein, 2013) has demonstrated the
ability of Green’s theorem marine preprocessing to be effective
with SEAM data and marine field data. That paper reviewed
and summarized the impact of that preprocessing on subse-
quent multiple removal (Zhang, 2007; Wang et al., 2012; Yang
et al., 2013; Tang et al., 2013) that motives the on-shore exten-
sion. Jinlong Yang extended the ISS free surface and internal
multiple algorithms to accommodate a source signature and ra-
diation pattern (Yang et al., 2013). Shih-Ying Hsu (Hsu et al.,
2011) described the relative insensitivity of the ISS internal
multiple attenuator to the near surface reference velocity. Lin
Tang (Tang and Weglein, 2014) presented a method to use an
invariance of Green’s theorem preprocessing to back out the
reference medium properties. Xinglu Lin (Lin and Weglein,
2015a,b) demontrates the importance of including a 3D source
in internal multiple algorithm (independent of the dimension
of the subsurface). Qiang Fu has contributed the first published
results on applying the ISS internal multiple attenuator to field
data from Saudi Aramco and Encana (Fu et al., 2010; Fu and
Weglein, 2014). Fang Liu (Liu and Weglein, 2013; Liu et al.,
2011) has pioneered: (1) new wave equation migration meth-
ods for RTM and (2) ISS direct depth imaging without a ve-
locity model, with viability demonstrated on the Kristin North
Sea field data. The latter advances in depth imaging depend
on an effective removal of multiples to be able to deliver their
promise and impact.

CONCLUSIONS

Today, the ISS internal-multiple attenuator combined with an
energy-minimization adaptive subtraction is the most capable

method for removing internal multiples. However, the cur-
rent ISS attenuator-plus-adaptive-subtraction method will fail
under the pressing and prioritized challenge of removing in-
ternal multiples that are proximal to and/or interfering with
primaries. In this note, we describe a three-pronged strategy
for providing an effective response to this pressing and priori-
tized challenge while retaining and adding to the strengths of
the current ISS internal-multiple attenuator. We have docu-
mented recent progress within that strategy to deliver the next
generation of required multiple removal. To achieve that goal
without requiring subsurface information requires Green’s the-
orem wave separation methods for preprocessing, and mining
the Inverse Scattering Series for increased effectiveness and
predictive capability.
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Abstract

In this paper, we examine the topic of whether multiples are sig-

nal or noise. A seismic event is considered ’signal’ if it intrinsically

useful for the purposes of petroleum exploration. Since migration and

migration-inversion are the methods used to extract subsurface infor-

mation from seismic reflection data (events), we review the different

wave propagation and imaging condition reside ingredients that be-

hind our migration methods. That examination identifies a migration

algorithm for locating and delineating targets in a finite volume with

two way propagating waves and with the most advanced and physi-

cally meaningful and amplitude interpretable of the various imaging

condition.

That migration algorithm allows an unequivocal response to the

question at whether multiples are signal or noise. It is obvious that

only primaries contribute to imaging. For an accurate discontinuous

velocity multiples don’t contribute to imaging, and for a continuous

velocity, they will cause false images. However, we also show that

when you have unrecorded primaries that multiples can be useful and
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can provide an approximate image corresponding to the migration of

the missing primary. To perform the latter process requires a veloc-

ity model, and all velocity analysis methods (e.g., tomography, CIG

flatness, and FWI) assume that multiples have been removed.

Migration and migration velocity analysis require primaries, and

only primaries are migrated. Multiples can be useful to provide the

approximate image due to an unrecorded primary, but multiples need

to be removed for velocity analysis and as events they are never mi-

grated, that is they are not moved from their location in time to where

they belong as a structure map in space.

Introduction

To begin, ”signal” within the context of exploration seismology, and for the

purpose of this paper, refers to the events in seismic recorded data used

for extracting subsurface information. Migration and migration-inversion

are the methods used to determine subsurface information from recorded

seismic data. Methods that employ the wave equation for migration have

two ingredients: (1) a wave propagation concept and (2) an imaging con-

dition. Claerbout (1971) pioneered and developed three imaging conditions

for seismic migration. He combined these imaging conditions with one-way

wave propagation concepts to determine structure at depth. Claerbout’s

three landmark imaging conditions are: (1) the exploding reflector model,

(2) the space and time coincidence of up and down waves, and (3) the pre-

dicted coincident source and receiver experiment at depth, at time equals

zero. The third imaging condition stands alone for clarity and definitive-
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ness and in its potential to be extended (by Stolt and his colleagues) for

detailed angle dependent amplitude analysis at the target and for specular

and non-specular reflection. The third imaging condition predicts an actual

seismic experiment at depth, and that predicted experiment consists of all

the events that experiment would record, if you had a source and receiver

at that subsurface location. That experiment would have its own recorded

events, the primaries and multiples for that predicted experiment. Stolt and

his colleagues (Clayton and Stolt, 1981; Stolt and Weglein, 1985; Stolt and

Benson, 1986; Weglein and Stolt, 1999; Stolt and Weglein, 2012) then pro-

vided the extension, for one way waves, of the Claerbout source and receiver

experiment imaging condition (Imaging condition III) to allow for non co-

incident source and receiver at time equals zero, to realize both structural

and inversion objectives. Due to causality, the offset dependence, at time

equals zero, is highly localized about zero offset. The character of that sin-

gular function, sharply peaked in offset, is smooth in the Fourier conjugate

space of offset wave-number, where the extraction of angle dependent plane

wave reflection information naturally occurs. The latter extension and gen-

eralization produced migration-inversion (Stolt and Weglein, 1985), or first

determining where anything changed (migration) followed by what specifi-

cally changed (inversion) at the image location. Recently, several papers by

Weglein and his colleagues (Weglein et al., 2011a,b; Liu and Weglein, 2014)

provided the next step in the evolution of migration based on the Claerbout

predicted source and receiver experiment imaging condition (Imaging con-

dition III), extending the prediction of the source and receiver experiment

in a volume within which there are two way propagating waves. The latter
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method of imaging based on Imaging condition III for a medium with two

way propagating waves, plays a central role in the analysis of this paper. The

predicted experiment, in the volume is realized by calling upon Green’s the-

orem and a Green’s function that along with its normal derivative vanishes

on the lower portion of the closed surface.

All current RTM methods, for two way waves, are extensions and/or

variants of the second of Claerbout’s imaging conditions, and do not corre-

spond to Claerbout’s imaging condition III, a source and receiver experiment

at depth.

Migration of two-way propagating waves

One doesn’t have to look very far to find an example of the need for a

predicted experiment at depth at points in a volume where there is two

way wave propagation. Imaging from above or below a single horizontal

reflector requires that two way wave propagation and Claerbout’s predicted

experiment imaging condition. Predicting a source and receiver experiment

to locate and to determine the reflection coefficient from above, and, sepa-

rately, from below, a single reflector requires predicting a source and receiver

experiment inside a volume with two way propagating waves, two way wave

migration, since the reflection data is upgoing (to a source and receiver ex-

periment located) above the reflector and is downgoing (to that experiment

when the source and receiver are located) below the reflector. Of course,

the addition of, for example, multiples and/or diving waves also represent

examples of two way wave propagation in the region where you want to
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predict the seismic experiment at depth.

As we mentioned, migration methods that employ the wave equation

have two ingredients: (1) a wave propagation or prediction model and (2)

an imaging condition.

For the purposes of this discussion, we are going to adopt the Claer-

bout predicted coincident source and receiver experiment at time equals

zero imaging condition for its peerless clarity, generality and quantitative

information value. In the next section, we describe the evolution of the

prediction of the source and receiver experiment component of Claerbout

imaging condition III.

To predict the source and receiver experiment at

depth

The classic well established mathematical physics foundation for predicting a

wavefield inside a volume from (measured) values on the surface surrounding

the volume was provided by Green (1828) as variants of what we now call

Green’s theorem. In the next several sections, we describe the evolution

and application of Green’s theorem for predicting the source and receiver

experiment at depth, since that is an essential step in tracing the realization

and application of Claerbout’s imaging condition III. In that evolution, we

will begin with: (1) the original infinite hemisphere volume model, then (2)

the reasoning, need for, and description of the finite volume model for one

way waves, and finally, (3) the need for and description of the finite volume

model prediction of the source and receiver experiment for two way waves.
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The material presented below on the evolution of the predicted source

and receiver experiment has been published previously in the cited refer-

ences. We cite and follow those references, but include that in this paper,

for: (1) ease of the references, and (2) to make this paper self contained,

and (3) because it plays such a critical role in Claerbout imaging III, which

in turn is essential to understand the new message that this paper is com-

municating.

The infinite hemispherical migration model

The earliest wave equation migration pioneers considered the subsurface

volume where the source and receiver experiment would be predicted as an

infinite hemispherical half space with known mechanical properties, whose

upper plane surface corresponded to the measurement surface, as in, e.g.,

Schneider (1978) and Stolt (1978). See Figure 1.

Those two papers each made a tremendous conceptual and practical

contribution to seismic imaging and exploration seismology. However, there

are several problems with the infinite hemispherical migration model. That

model assumes: (1) that all subsurface properties beneath the measurement

surface (MS) are known, and (2) that an anticausal Green’s function (e.g.,

Schneider (1978)), with a Dirichlet boundary condition on the measurement

surface, would allow measurements (MS) of the wavefield, P , on the upper

plane surface of the hemisphere to determine the value of P within the

hemispherical volume, V . The first assumption leads to the contradiction

that we have not allowed for anything that is unknown to be determined

6

162



in our model, since everything within the closed and infinite hemisphere

is assumed to be known. Within the infinite hemispherical model there is

nothing and/or nowhere below the measurement surface where an unknown

scattering point or reflection surface can serve to produce reflection data

whose generating reflectors are initially unknown and being sought by the

migration process.

The second assumption, in early infinite hemispherical wave equation

migration, assumes that Green’s theorem with wavefield measurements on

the upper plane surface and using an anticausal Green’s function satisfying

a Dirichlet boundary condition can determine the wavefield within V . That

conclusion assumes that the contribution from the lower hemispherical sur-

face of S vanishes as the radius of the hemisphere goes to infinity. That is

not the case, as we explicitly demonstrate below. To examine the various

large radius hemispherical surface contributions to Green’s theorem wave

prediction in a volume, it is instructive to review the relationship between

Green’s theorem and the Lippmann-Schwinger scattering equation.

Green’s theorem review

We begin with a space and time domain Green’s theorem. Consider two

wavefields P and G0 that satisfy

(∇2 − 1
c2
∂2
t )P (r, t) = ρ(r, t) (1)
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and

(∇2 − 1
c2
∂2
t )G0(r, t, r′, t′) = δ(r− r′)δ(t− t′), (2)

where we assume 3D wave propagation and the wavefield velocity c is a

constant. ρ is a general source, i.e., it represents both active sources (air

guns, dynamite, vibrator trucks) and passive sources (heterogeneities in the

earth). The causal solution to equation 1 can be written as

P (r, t) =
∫ t+

−∞
dt′
∫
∞
dr′ρ(r′, t′)G+

0 (r, t, r′, t′), (3)

where G+
0 is the causal whole space solution to equation 2 and t+ = t + ε

where ε is a small positive quantity. The integral from t+ to ∞ is zero due

to the causality of G+
0 (please see Morse and Feshbach, 1981, page 836).

Equation 3 represents the linear superposition of causal solutions G+
0 with

weights ρ(r′, t′) summing to produce the physical causal wavefield solution

to equation 1. Equation 3 is called the scattering equation and represents

an all space and all time causal solution for P (r, t). It explicitly includes all

sources and produces the field at all points of space and time. No additional

boundary or initial conditions are required in equation 3.

Now consider the integral

∫ t+

0
dt′
∫
V
dr′(P∇′2G0 −G0∇′2P )

=
∫ t+

0
dt′
∫
V
dr′∇′ · (P∇′G0 −G0∇′P ), (4)

8

164



and we rewrite equation 4 using Green’s theorem

∫ t+

0
dt′
∫
V
dr′∇′ · (P∇′G0 −G0∇′P )

=
∫ t+

0
dt′
∫
S
dS′n̂ · (P∇′G0 −G0∇′P ). (5)

This is essentially an identity, within the assumptions on functions and

surfaces, needed to derive Green’s theorem. Now choose P = P (r′, t′) and

G0 = G0(r, t, r′, t′) from equations 1 and 2. Then replace ∇′2P and ∇′2G0

from the differential equations 1 and 2.

∇′2G0 =
1
c2
∂′2t G0 + δ(r− r′)δ(t− t′) (6)

∇′2P =
1
c2
∂′2t P + ρ(r′, t′), (7)

and assume that the output variables (r, t) are in the intervals of integration:

r in V , t > 0. The left hand side of equation 4 becomes:

∫ t+

0
dt′
∫
V
dr′

1
c2

(P∂2
t′G0 −G0∂

2
t′P ) + P (r, t)

−
∫ t+

0
dt′
∫
V
dr′ρ(r′, t′)G0(r, t, r′, t′). (8)

The expression inside the first set of parentheses is a perfect derivative
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∂t′(P∂t′G0−G0∂t′P ) integrated over t′. The result is (for r in V and t > 0)

P (r, t) =
∫
V
dr′
∫ t+

0
dt′ρ(r′, t′)G0(r, t, r′, t′)

− 1
c2

∣∣∣t+
t′=0

∫
V
dr′[P∂t′G0 −G0∂t′P ]

+
∫ t+

0
dt′
∫
S
dS′n̂ · (P∇′G0 −G0∇′P ). (9)

We assumed differential equations 6 and 7 in deriving equation 9 and G0 can

be any solution of equation 6 in the space and time integrals in equation 4,

causal, anticausal, or neither. Each term on the right hand side of equation 9

will differ with different choices of G0, but the sum of the three terms will

always be the same, P (r, t).

If we now choose G0 to be causal (= G+
0 ) in equation 9, then in the

second term on the right hand side the upper limit gives zero because G+
0

and ∂t′G
+
0 are zero at t′ = t+. The causality of G+

0 and ∂t′G
+
0 causes only

the lower limit t′ = 0 to contribute in

− 1
c2

∣∣∣t+
t′=0

∫
V
dr′[P∂t′G+

0 −G+
0 ∂t′P ]. (10)

If we let the space and time limits in equation 9 both become unbounded,

i.e., V →∞ and the t′ interval becomes [−∞, t+], and choose G0 = G+
0 , the

whole space causal Green’s function, then by comparing equations 3 and 9

we see that for r in V and t > 0 that
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∫ t+

−∞
dt′
∫
S
dS′n̂ · (P∇′G+

0 −G+
0 ∇′P )

− 1
c2

∣∣∣t+
−∞

∫
∞
dr′[P∂t′G+

0 −G+
0 ∂t′P ] = 0. (11)

V =∞ means a volume that spans all space, and∞−V means all points

in ∞ that are outside the volume V .

The solution for P (r, t) in equation 3 expresses the fact that if all of the

factors that both create the wavefield (active sources) and that subsequently

influence the wavefield (passive sources, e.g., heterogeneities in the medium)

are explicitly included in the solution as in equation 9, then the causal

solution is provided explicitly and linearly in terms of those sources, as

a weighted sum of causal solutions, and no surface, boundary or initial

conditions are necessary or required.

If all sources for all space and all time are explicitly included as in equa-

tion 3, then there is no need for boundary or initial conditions to produce the

physical/causal solution derived from a linear superposition of elementary

causal solutions.

In the (r, ω) domain equations 1 and 2 become

(∇2 + k2)P (r, ω) = ρ(r, ω) (12)

(∇2 + k2)G0(r, r′, ω) = δ(r− r′), (13)

where
∫∞
−∞ P (r, t)eiωtdt = P (r, ω) and

∫∞
−∞G0(r, r′, t)eiωtdt = G0(r, r′, ω),

t′ is chosen to be zero in equation 2. The causal all space and temporal
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frequency solution analogous to equation 3 is

P (r, ω) =
∫
∞
dr′ρ(r′, ω)G+

0 (r, r′, ω), (14)

and Green’s second identity is

∫
V
dr′(P∇′ 2G0 −G0∇′ 2P ) =

∮
S
dS′ n̂ · (P∇′G0 −G0∇′P ). (15)

Substituting ∇2G0 = −k2G0 + δ and ∇2P = −k2P + ρ in Green’s theorem,

we find

P (~r, ω)
~r in V

0
~r out V

 =
∫
V
dr′P (r′, ω)δ(r− r′)

=
∫
V
ρ(~r ′, ω)G0(~r, ~r ′, ω) d~r ′ +

∮
S

(P∇′G0 −G0∇′P ) · n̂ dS.

(16)

There are no initial conditions (temporal boundary conditions), since in r, ω

we have already explicitly included all time in Fourier transforming from t

to ω. The contributions from sources for all times are explicitly included

in the (~r, ω) formulation of Green’s Theorem, equation 16. In r, ω the only

issue is whether sources are inside or outside V . The Lippmann-Schwinger

equation (14) provides the causal physical solution for P for all r due to

the sources in all space. Equation 14 is the r, ω version of equation 3 and

must choose G0 = G+
0 (causal) to have P as the physical solution built
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from the superposition (and linearity of weighted elementary causal solution,

G+
0 (~r, ~r ′, ω)). In contrast, equation 16 (as in equation 9) will produce the

physical solution, P , with any solution for G0 that satisfies equation 13.

Equation 14 can be written as:

∫
V
ρG+

0 +
∫
∞−V

ρG+
0 . (17)

For r in V , the second term on the right hand side of equation 16 (with

choosing G0 = G+
0 in equation 16) equals the second term in equation 17,

i.e.,

∫
∞−V

dr′ρG+
0 =

∮
S
dS′n̂ · (P∇′G+

0 −G+
0 ∇′P ). (18)

Thus, the first term in equation 17 gives contribution to P , for r in V due

to sources in V , and the second term in equation 17 gives contribution to

P , for r in V due to sources not in V . With G0 = G+
0

∮
S
dS′n̂ · (P∇′G+

0 −G+
0 ∇′P ), (19)

provides the contribution to the field, P , inside V due to sources outside the

volume V .

What about the large |r| contribution of the surface integral to the field

inside the volume? We use Green’s theorem to predict that the contribution

to the physical/causal solution P in V from the surface integral in Green’s
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theorem, in general, and also

∮
S
{P ∂G

+
0

∂n
−G+

0

∂P

∂n
}dS, (20)

vanishes as |r| → ∞ and in contrast the contribution to P in V from

∮
S
{P ∂G

−
0

∂n
−G−0

∂P

∂n
}dS, (21)

does not vanish as |r| → ∞.

We begin with equation 16

P (~r, ω)
~r in V

0
~r out V

 =
∫
V
dr′ρ(r′, ω)G±0 (r, r′, ω) +

∮
S
dS′{P ∂G

±
0

∂n
−G±0

∂P

∂n
} (22)

with G0 either causal G+
0 or anticausal G−0 . Taking the limit |r| → ∞,

then for G0 = G+
0 in 22, the contribution from the second term on the right

hand side of equation 22 to P in V must go to zero, following a comparison

with

P (r, ω) =
∫
∞
dr′ρ(r′, ω)G+

0 (r, r′, ω), (23)

(the Lippmann-Schwinger equation). However, with G0 = G−0 , and as |r| →
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∞,

∮
S→∞

dS′{P ∂G
−
0

∂n
−G−0

∂P

∂n
}+

∫
V→∞

dr′ρ(r′, ω)G−0 (r, r′, ω)

=
∫
V→∞

dr′ρ(r′, ω)G+
0 (r, r′, ω) + 0, (24)

so

∮
S→∞

{P ∂G
−
0

∂n
−G−0

∂P

∂n
}dS

=
∫
∞

[G+
0 (r, r′, ω)−G−0 (r, r′, ω)]ρ(r′, ω)dr′ 6= 0 (25)

for all ~r. Hence, the large distance surface contribution to the physical

field, P , within V with the surface values of the physical field P and ∂P/∂n

and an anticausal Green’s function G−0 will not vanish as |r| → ∞. As we

mentioned earlier, this will be chosen to be one of the two problems with

the infinite hemisphere model of seismic migration.

Although

P (r, ω) =
∫
∞
dr′ρ(r′, ω)G−0 (r, r′, ω), (26)

would be a solution to equations 12 for all r, it would not be the causal/physical

solution to equations 12. And hence, in summary the contribution to the

causal/physical solution for P (r, ω) for r in V from

∫
S
dS′

(
P
dG+

0

dn
−G+

0

dP

dn

)
, (27)
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goes to zero as |R| → ∞ where P and dP/dn corresponds to physical/causal

boundary values of P and dP/dn, respectively. Physical measurements of

P and dP/dn on S are always causal/physical values. The integral

∫
S
dS′

(
P
dG−0
dn
−G−0

dP

dn

)
, (28)

does not go to zero for anti-causal, G−0 , and causal/physical P and dP/dn.

The latter fact bumps up against a key assumption in the infinite hemisphere

models of migration. That combined with the fact the infinite hemisphere

model assumes the entire subsurface, down to “infinite” depth is known,

suggests the need for a different model. That model is the finite volume

model (see, e.g., Weglein et al., 2011a,b).

Finite volume model for migration

The finite model for migration assumes that we know or can adequately

estimate earth medium properties (e.g., velocity) down to the reflector we

seek to image. The finite volume model assumes that beneath the sought

after reflector the medium properties are, and will remain, unknown. The

“finite volume model” corresponds to the volume within which we assume

the earth properties are known and within which we predict the wavefield

from surface measurements. We have addressed the two issues of the infinite

hemisphere model, i.e., (1) the assumption we know the subsurface to all

depths and (2) the contribution from the lower surface of the closed surface

(as |r| → ∞) to the surface integral with an anticausal Green’s function has
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no contribution to the field being predicted in the volume.

The finite volume model removes both of the problematic assumptions

behind the infinite hemisphere model. However, we are now dealing with a

finite volume V , and with a surface S, consisting of upper surface SU , lower

surface SL and walls, SW (Figure 2). We only have measurements on SU .

In the following sections on: (1) Green’s theorem for one-way propagation;

and (2) Green’s theorem for two-way propagation we show how the choice

of Green’s function allows the finite volume migration model to be realized.

The construction of the Green’s function that can accommodate two-way

propagation in V , from contributions only on SU , is a new contribution

(Weglein et al., 2011a,b) that allows Claerbout Imaging III to be realized

in a volume with two-way propagating waves. That places RTM on a firm

wave theoretical Green’s theorem basis, for the first time, with algorithmic

consequence and with a clear mathematical physics understanding of the

amplitude of the RTM image. The new Green’s function is neither causal,

anticausal, nor a combination of causal and/or anticausal Green’s functions.

In the important paper by Amundsen (1994), a finite volume model for

wavefield prediction is developed which requires knowing (i.e., predicting

through solving an integral equation) for the wavefield at the lower surface.

In parts I and II we show that for one and two-way propagation, respectively,

that with a proper and distinct choice of Green’s function, in each case,

that absolutely no wavefield measurement information on the lower surface

is required or needs to be estimated/predicted. Below, we review how to

choose the Green’s functions that allow for two-way propagation (for RTM

application) without the need for measurements on the lower boundary of
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the closed surface in Green’s theorem.

Finite volume model for migration (Claerbout Imag-

ing Condition III): Green’s theorem for predicting

the source and receiver experiment for one way

waves

Consider a 1D upgoing plane wavefield P = Re−ikz propagating upward

through the 1D homogeneous volume without sources between z = a and

z = b (Figure 3). The wave P inside V can be predicted from

P (z, ω) =
∣∣∣b
z′=a
{P (z′, ω)

dG0

dz′
(z, z′, ω)−G0(z, z′, ω)

dP

dz′
(z′, ω)} (29)

with a Green’s function, G0, that satisfies

(
d2

dz′ 2
+ k2

)
G0(z, z′, ω) = δ(z − z′) (30)

for z and z′ in V . To be more precise in our language, we want to predict

what a receiver at depth would record in terms of what a surface receiver

records. We can easily show that for an upgoing wave, P = Re−ikz, that

if one chooses G0 = G+
0 (causal, eik|z−z′|/(2ik)), the lower surface (i.e.

z′ = b) constructs P in V and the contribution from the upper surface

vanishes. On the other hand, if we choose G0 = G−0 (anticausal solution

e−ik|z−z′|/(−2ik)), then the upper surface z = a constructs P = Re−ikz

in V and there is no contribution from the lower surface z′ = b. The
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effective sources (P (b), P ′(b)) on the lower surface z′ = b with a causal

Green’s function, G+
0 , will produce a wave moving away from the source at

z = b, hence upward in the region between a < z < b. At the upper

surface z′ = a, the anticausal G−0 will produce waves moving towards the

source at z = a and hence moving upward for a < z < b. Also, using the

anticausal Green’s function, G−0 , takes the wavefield (and its derivative) at

z = a, and predict where it was previously at earlier time. For an upwave

at z = a, that prediction of where it was previously is between z = a and

z = b.

Since in exploration seismology the reflection data is typically upgoing,

once it is generated at the reflector, and we only have measurements at the

upper surface z′ = a, we choose an anticausal Green’s function G−0 in one-

way wave prediction in the finite volume model. If ,in addition, we want to

remove the need for dP/dz′ at z′ = a we can impose a Dirichlet boundary

condition on G−0 , to vanish at z′ = a. The latter Green’s function is labeled

G−D0 ,

G−D0 = − e−ik|z−z′|

2ik
−
(
−e
−ik|zI−z′|

2ik

)
, (31)

where zI is the image of z through z′ = a. It is easy to see that zI = 2a− z
and that

P (z) = − dG−D0

dz′
(z, z′, ω)

∣∣∣
z′=a

P (a) = e−ik(z−a)P (a), (32)

in agreement with a simple Stolt FK phase shift for predicting an upward
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propagating wave in a volume, that is between a < z < b in terms of the

wavefield at z = a. Please note that P (z, ω) = −dG−D0 /dz′(z, z′, ω)|z′=aP (a, ω)

back propagates P (z′ = a, ω), not G−D0 . The latter thinking that G−D0 back

propagates (or G+D
0 forward propagates) data is a fundamental mistake/flaw

in many seismic back propagation migration and inversion theories (and

in feedback multiple attenuation methods), that harkens back to the his-

torically earlier and qualitative Huygens principle concepts that preceded

Green’s theorem and (as is clear in this example) can lead to amplitude

issues and errors.

The Green’s theorem 3D generalization that predicts an experiment with

both sources and receivers at depth for a one way propagating wavefield in

the volume is as follows:

∫
dG−D0

dzs
(x′s, y

′
s, z
′
s, xs, ys, zs;ω)

×
[∫

dG−D0

dzg
(x′g, y

′
g, z
′
g, xg, yg, zg;ω)D(x′g, y

′
g, z
′
g, x
′
s, y
′
s, z
′
s;ω)dx′gdy

′
g

]
dx′sdy

′
s

= M(xs, ys, zs, xg, yg, zg;ω)

= M(xm, ym, zm, xh, yh, zh;ω), (33)

where xg +xs = xm, yg + ys = ym, zg + zs = zm, xg −xs = xh, yg − ys = yh,

and zg− zs = zh. In the space and time domain, equation 33 corresponds to

“uncollapsed migration”, M(xm, ym, zm, xh, yh, zh = 0; t = 0) that extends

and generalizes the original Imaging Condition III, to non-zero offset at time

equals zero. The retaining of kh information (rather than stacking over kh,

for xh = 0, hence, uncollapsed) allows for imaging and subsequent AVO
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analysis in a multi-D subsurface (see e.g. Clayton and Stolt (1981), Stolt

and Weglein (1985), Weglein and Stolt (1999)).

For one way propagating wavefields in the finite volume, choosing an

anticausal Green’s function allows only wavefield measurements on the upper

surface to be sufficient to predict the wavefield in the volume. For two way

propagating wavefields in a finite volume an anticausal Green’s function will

not allow for measurements on the upper surface to be sufficient to predict

the wavefield in the volume. The Green’s function for two-way propagation

that will eliminate the need for data at the lower surface of the closed Green’s

theorem surface is found by finding a general solution to the Green’s function

for the medium in the finite volume model and imposing both Dirichlet and

Neumann boundary conditions at the lower surface.

Predicting the source-receiver experiment at depth

where the velocity configuration is c(x, y, z)

For a receiver predicted at a point (x, y, z) for determining P (x, y, z, xs, ys, zs, ω),

call on the Green’s function, G0, that satisfies

{
∇′ 2 +

ω2

c2(x′, y′, z′)

}
G0(x′, y′, z′, x, y, z, ω)

=δ(x− x′)δ(y − y′)δ(z − z′) (34)
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for a source at (x, y, z). P is the physical/causal solution satisfying

{
∇′ 2 +

ω2

c2(x′, y′, z′)

}
P (x′, y′, z′, xs, ys, zs, ω)

=A(ω)δ(x′ − xs)δ(y′ − ys)δ(z′ − zs). (35)

As a first step, we want to predict P for a point (x, y, z) in the volume V , for

the actual/original source at (xs, ys, zs). For (x, y, z) in V , arrange for G0

and ∇′G0 · n̂′ to be zero for (x′, y′, z′) on the lower surface SL and the walls

SW of the finite volume. The solution for G0 in V and on S can be found by a

numerical modeling algorithm where the “source” is at (x, y, z) and the field,

G0, and ∇G0 · n̂ at (x′, y′, z′) are both imposed to be zero on SL and SW .

Once that model is run for a source at (x, y, z) for G0(x′, y′, z′, x, y, z, ω) [for

every eventual predicted receiver point, (x, y, z), for P ] where G0 satisfies

Dirichlet and Neumann conditions for (x′, y′, z′) on SL and SW we output

G0(x′, y′, z′, x, y, z, ω) for (x′, y′, z′) on SU (the measurement surface).

With that G0, use Green’s theorem to predict the receiver experiment

at depth (with the original/actual source at (xs, ys, zs))

P (x, y, z, xs, ys, zs, ω)

=
∫
Sg

{
∂GDN0

∂z′
(x, y, z, x′, y′, z′, ω)P (x′, y′, z′, xs, ys, zs, ω)

− ∂P

∂z′
(x′, y′, z′, xs, ys, zs, ω)GDN0 (x, y, z, x′, y′, z′, ω)

}
dx′dy′, (36)

where z′ = fixed depth of the cable and (xs, ys, zs) = fixed location of the

source. Sg is the upper (measurement) surface containing receivers for a
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fixed shot on the measurement surface. This predicts the receiver at (x, y, z),

a point below the measurement surface in the volume V (for a source on

the upper (measurement) surface) in terms of measurements on the upper

surface, Su.

Now predict the experiment corresponding to both the receiver and the

source at depth, by invoking reciprocity and performing a Green’s theorem

surface integral over sources

P (xg, yg, z, x, y, z, ω)

=
∫
Ss

{
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
dxsdys. (37)

Ss is the upper (measurement) surface consisting of shots for a predicted

receiver point at depth. The original/actual receiver locations on the upper

surface are labeled (x′, y′, z′) and the coordinates of the predicted receiver at

depth is now relabeled (xg, yg, z) in equation 37, whereas it was (x, y, z) in

equation 36. P (xg, yg, z, x, y, z, ω) is the field corresponding to a predicted

receiver at (xg, yg, z) and the source to (x, y, z) and change to midpoint offset

P (xm, xh, ym, yh, zm, zh = 0, ω) and

∫
Ss

∫ ∫
dxs dys dω

{
∂GDN0

∂zs
(x, y, z, xs, ys, zs, ω)P (xg, yg, z, xs, ys, zs, ω)

− ∂P

∂zs
(xg, yg, z, xs, ys, zs, ω)GDN0 (x, y, z, xs, ys, zs, ω)

}
,(38)

and Fourier transform over xm, xh, ym, yh to find P̃ (kxm , kxh
, kym , kyh

, kzm , zh =
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0, t = 0). Equation 38 corresponds to Claerbout imaging condition III mi-

gration for a general v(x, y, z) velocity configuration, within a volume that

allows two way wave propagation in terms of data only on the upper surface.

Summary of wave equation migration for one way

and two way propagating waves

Green’s theorem based migration and migration-inversion require velocity

information for location and velocity, density, absorption. . . for amplitude

analyses at depth. When we say the medium is “known,” the meaning of

known depends on the goal: migration or migration-inversion. Backpropa-

gation and imaging each evolved and then extended/generalized and merged

into migration-inversion (Figure 4).

For one-way wave propagation the double downward continued data, D

is

D(at depth) =
∫
Ss

∂G−D0

∂zs

∫
Sg

∂G−D0

∂zg
DdSg dSs, (39)

where D in the integrand = D(on measurement surface), ∂G−D0 /∂zs = an-

ticausal Green’s function with Dirichlet boundary condition on the mea-

surement surface, s = shot, and g = receiver. For two-way wave double
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downward continuation:

D(at depth) =
∫
Ss

[
∂GDN0

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

+ GDN0

∂

∂zs

∫
Sg

{
∂GDN0

∂zg
D +

∂D

∂zg
GDN0

}
dSg

]
dSs, (40)

where D in the integrands = D(on measurement surface). GDN0 is neither

causal nor anticausal. GDN0 is not an anticausal Green’s function; it is not

the inverse or adjoint of any physical propagating Green’s function. It is the

Green’s function needed for WEM RTM, that is RTM based on Claerbout

Imaging Condition III. GDN0 is the Green’s function for the model of the

finite volume that vanishes along with its normal derivative on the lower

surface and the walls. If we want to use the anticausal Green’s function of

the two-way propagation with Dirichlet boundary conditions at the mea-

surement surface then we can do that, but we will need measurements at

depth and on the vertical walls. To have the Green’s function for two-way

propagation that doesn’t need data at depth and on the vertical sides/walls,

that requires a non-physical Green’s function that vanishes along with its

derivative on the lower surface and walls. Green’s functions called upon

in Green’s theorem applications for migration are auxiliary functions and

are specific point source wavefield solutions that satisfy the medium prop-

erties in the finite volume, and whose other properties are chosen for the

convenience of the application. The commitment within Green’s theorem

applications is for the physical wavefield, P (x, y, z, xs, ys, zs), to relate to the

physical reality and to have physical properties and boundary conditions.
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In the next section, we take another step closer to our goal and objective.

Having established a Claerbout imaging III methodology (please see equa-

tions 38 and 40) for a medium (a finite volume) with two way propagating

waves, we are in a position to predict source and receiver experiments at

depth and then a Claerbout III imaging result for data consisting of pri-

maries and multiples. For the 1D layered medium, and a normal incident

wave that we are examining, the data (consisting of primaries and inter-

nal multiples) and the predicted source and receiver experiment at depth

results and the migration algorithm’s results are analytic, transparent and

the conclusions unambiguous. The role of recorded primaries and multi-

ples in contributing first to the predicted source and receiver experiment

at depth, and then to the (Claerbout Imaging III) coincident source and

receiver experiment at time equals zero provides a definitive response to

whether or not multiples contribute to seismic imaging. Understanding the

physics behind the mathematics for the case of primaries and internal mul-

tiples, allows for an immediate set of similar conclusions to be drawn for the

role of free surface multiples in migration. In the section below, we provide

the explicit Green’s theorem source and receiver at depth prediction and

then Claerbout III imaging for a general layered medium where the veloc-

ity and density vary and where the data consists of primaries and internal

multiples.
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Green’s theorem wavefield prediction in a 1D lay-

ered medium with velocity and density variation

First, let us assume the wave propagation problem in a (one dimensional)

volume V bounded by a shallower depth a and deeper depth b to be governed

by the differential equation:

{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
D(z′, ω) = 0, (41)

where a ≤ z ′ ≤ b is the depth, and ρ(z′) and c(z′) are the density and

velocity fields, respectively. In exploration seismology, we let the shallower

depth a be the measurement surface where the seismic acquisition takes

place (please see equation 29). The volume V is the finite volume defined in

the “finite volume model” for migration, the details of which can be found

in Weglein et al. (2011a). We measure D at the measurement surface z′ = a,

and the objective is to predict D anywhere between the shallower surface

and another surface with greater depth, z′ = b. This can be achieved via

the solution of the wave-propagation equation in the same medium by an

idealized impulsive source or Green’s function:

{
∂

∂z′
1

ρ(z′)
∂

∂z′
+

ω2

ρ(z′)c2(z′)

}
G0(z, z′, ω) = δ(z − z′), (42)

where z is the location of the source, and a < z ′ < b and z increases in a

downward direction. Abbreviating G0(z, z′, ω) as G0, the solution for D in

the interval a < z < b is given by Green’s theorem (the generalization of
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equation 29 for the case of variable velocity and density):

D(z, ω) =
1

ρ(z′)

{
D(z′, ω)

∂G0

∂z′
−G0

∂D(z′, ω)
∂z′

}∣∣∣∣z′=b

z′=a

, (43)

where a and b are the shallower and deeper boundaries, respectively, of the

volume to which the Green’s theorem is applied. It is identical to equa-

tion (43) of Weglein et al. (2011a), except for the additional density contri-

bution to the Green’s theorem. Interested readers may find the derivation

of equation (43) in section 2 of Liu and Weglein (2014).

Note that in equation (43), the field values on the closed surface of

the volume V are necessary for predicting the field value inside V . The

surface of V contains two parts: the shallower portion z′ = a and the

deeper portion z′ = b. In seismic exploration, the data at z′ = b is not

available. For example, one of the significant artifacts of the current RTM

procedures is caused by this phenomenon: there are events necessary for

accurate wavefield prediction that reach z′ = b but never return to z′ = a,

as is demonstrated in Figure 5. The solution, based on Green’s theorem

without any approximation, was first published in Weglein et al. (2011a)

and Weglein et al. (2011b). The basic idea is summarized below.

Since the wave equation is a second-order differential equation, its gen-

eral solution has a great deal of freedom/flexibility. In other words, for a

wave equation with a specific medium property, there are an infinite num-

ber of solutions. This freedom in choosing the Green’s function has been

taken advantage of in many seismic-imaging procedures. For example, the

most popular choice in wavefield prediction is the physical solution G+
0 . In
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downward continuing a one way propagating upgoing wavefield to a point

in the subsurface, the anti-causal solution G−0 is often used in equation 43

(as we have shown in the earlier sections, i.e., equations 31 and 32).

Weglein et al. (2011a,b) show that (with the G−0 choice), the contribu-

tion from z′ = B will be zero under one way wave assumptions, and only

measurements are required at z′ = A. For two way propagating waves, G−0

will not make the contribution for z′ = B vanish. However, if both G0 and

∂G0/∂z
′ vanish at the deeper boundary z′ = b, where measurements are

not available, then only the data at the shallower surface (i.e., the actual

measurement surface) is needed in the calculation. We use GDN0 to de-

note the Green’s function with vanishing Dirichlet and Neumann boundary

conditions at the deeper boundary.

Predicting the source and receiver at depth in a 1D

layered medium

The original Green’s theorem in equation (43) is derived to predict the

wavefield (i.e., receivers) in the subsurface. It can also be used to predict the

sources in the subsurface by taking advantage of reciprocity: the recording

is the same after the source and receiver locations are exchanged.

Assuming we have data on the measurement surface: D(zg, zs) (the ω

dependency is ignored), we can use GDN0 (z, zg) to predict it from the receiver
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depth zg to the target depth z:

D (z, zs) =
1

ρ(zg)

{
∂D (zg, zs)

∂zg
GDN0 (z, zg)−D (zg, zs)

∂GDN0 (z, zg)
∂zg

}
.

(44)

Taking the ∂
∂zs

operation on equation (44), we have a similar procedure

to predict ∂D(zg, zs)/∂zs to the subsurface:

∂D (z, zs)
∂zs

=
1

ρ(zg)

{
∂2D (zg, zs)
∂zg∂zs

GDN0 (z, zg)− ∂D (zg, zs)
∂zs

∂GDN0 (z, zg)
∂zg

}
.

(45)

Equations 44 and 45 are the 1D versions of equations 36 and 37.

With equations (44) and (45), we predict the data D and its partial

derivative over zs to the subsurface location z. According to reciprocity,

D (z, zs) = E (zs, z), where E (zs, z) is resulted from exchanging the source

and receiver locations in the experiment to generate D at the subsurface.

The predicted data E (zs, z) can be considered as the recording of receiver

at zs for a source located at z.

For this predicted experiment, the source is located at depth z, according

to the Green’s theorem, we can downward continue the recording at zs to

any depth shallower than or equal to z.

In seismic migration, we predict E (zs, z) at the same subsurface depth z
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Depth Range Velocity Density
(−∞, a1) c0 ρ0

(a1, a2) c1 ρ1

(a2,∞) c2 ρ2

Table 1: The properties of an acoustic medium with two reflectors, at depth
a1 and a2.

with GDN0 (z, zs) to have an experiment with coincident source and receiver:

E (z, z) =
1

ρ(zs)

{
∂E (zs, z)

∂zs
GDN0 (z, zs)− E (zs, z)

∂GDN0 (z, zs)
∂zs

}
,

=
1

ρ(zs)

{
∂D (z, zs)

∂zs
GDN0 (z, zs)−D (z, zs)

∂GDN0 (z, zs)
∂zs

}
. (46)

Equation 46 is the 1D version of equation 38.

If zs < zg and we assume the data is deghosted, the ∂
∂zs

operation on

D(zg, zs) is equivalent to multiplying −ik, in this case, equation (46) can be

further simplified:

E (z, z) = − 1
ρ(zs)D(z, zs)

{
∂GDN0 (z, zs)

∂zs
+ ikGDN0 (z, zs)

}
. (47)

Analytic examples (for a 1D layered medium)

As an example, for a 2-reflector model (with an ideal impulsive source lo-

cated at zs, the depth of receiver is zg > zs, the geological model is listed in

Table 1), the data and its various derivatives can be expressed as:
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D(zg, zs) =
ρ0x
−1

2ik
{
y + αy−1

}
,

∂D(zg, zs)
∂zg

=
ρ0

2
x−1

{
y − αy−1

}
,

∂D(zg, zs)
∂zs

= −ρ0

2
x−1

{
y + αy−1

}
,

∂2D(zg, zs)
∂zg∂zs

=
ρ0k

2i
x−1

{
y − αy−1

}
,

(48)

where x = eikzs , y = eikzg , σ = eikz, α = eik(2a1)
(
R1 + (1−R2

1)β
)
, and β =

∞∑
n=0

(−1)nRn1R
n+1
2 eik1(2n+2)[a2−a1]. And R1 = c1ρ1−c0ρ0

c1ρ1+c0ρ0
, and R2 = c2ρ2−c1ρ1

c2ρ2+c1ρ1

are the reflection coefficients from geological boundaries.

The predicted experiment above the first reflector for Claer-

bout Imaging Condition III

For z < a1, the boundary values of the Green’s function are:

GDN0 (z, zg) = ρ0
eik(z−zg)−eik(zg−z)

2ik = ρ0
σy−1−σ−1y

2ik ,

GDN0 (z, zs) = ρ0
σx−1−σ−1x

2ik ,

∂GDN
0 (z,zg)
∂zg

= ρ0
σy−1+σ−1y

−2 ,

∂GDN
0 (z,zs)
∂zs

= ρ0
σx−1+σ−1x

−2 .

(49)

After substituting equation (48) into equation (47), we have:

E(z, z) =
1 + eik(2a1−2z)

(
R1 + (1−R2

1)β
)

2ik/ρ0
. (50)

The result above can be Fourier transformed into the time domain to
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have:

E(z, z, t)
−ρ0c0/2

=H(t) +R1H (t− t1) + (1−R2
1)

×
∞∑
n=0

(−1)nRn1R
n+1
2 H (t− t1 − (2n+ 2)t2) , (51)

where t1 = 2a1−2z
c0

and t2 = (a2−a1)
c1

. Balancing out the −ρ0c0
2 factor∗, the

data after removing the direct wave is denoted as D̂(z, t) = −2
ρ0c0

E(z, z, t)−
H(t):

D̂(z, t) =R1H (t− t1)

+ (1−R2
1)
∞∑
n=0

(−1)nRn1R
n+1
2 H (t− t1 − (2n+ 2)t2) . (52)

We take the imaging condition as first letting z → a1 through values

smaller that a1, and then (subsequently) taking the limit as t → 0+, that

is, approaching zero from positive values, we find:

lim
t→0+

(
lim
z→a−1

D̂(z, t)

)
= R1, (53)

where
a−1 = a1 − ε1 ε1 > 0,

0+ = 0 + ε2 ε2 > 0,
(54)

and we obtained the image of the first reflector at the actual depth a1 with

the correct reflection coefficient as amplitude.
∗This factor is present in the incident wave, i.e., causal Green’s function for a homo-

geneous medium with density ρ0 and velocity c0.
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Predicting the source and receiver experiment between the

first and second reflectors

For a1 < z < a2, we have:

GDN0 (z, zg) = [(R1λ− λ−1)µ+ (λ−R1λ
−1)µ−1]/[2ik1(1 +R1)/ρ1],

∂GDN0 (z, zg)
∂zg

= [(R1λ− λ−1)µ− (λ−R1λ
−1)µ−1]/[2k1(1 +R1)/(kρ1)],

(55)

where λ = eik1(z−a1), µ = eik(zg−a1), k1 = ω
c1

. Substituting equation (55)

into equation (48), and transforming the aforementioned result into the time

domain, we have:

E(z, z, t)/(−ρ1c1/2) = H(t) + 2
∞∑
n=1

(−1)nRn1R
n
2H{t− [2n(a2 − a1)/c1]}

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn2H{t− [2z + 2na2 − 2(n+ 1)a1]/c1}

+
∞∑
n=0

(−1)nRn1R
n+1
2 H{t− [2(n+ 1)a2 − 2na1 − 2z]/c1}. (56)

Balancing out the −ρ1c1/2 factor, the data after removing the direct

wave is denoted as D̂(z, t) = −2
ρ1c1

E(z, z, t)−H(t):

D̂(z, t) =2
∞∑
n=1

(−1)nRn1R
n
2H{t− [2n(a2 − a1)/c1]}

+
∞∑
n=0

(−1)n+1Rn+1
1 Rn2H{t− [2z + 2na2 − 2(n+ 1)a1]/c1}

+
∞∑
n=0

(−1)nRn1R
n+1
2 H{t− [2(n+ 1)a2 − 2na1 − 2z]/c1}, (57)
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and after taking the t = 0+ imaging condition, we have:

D̂(z, t) =


−R1 if (z = a1 + ε1)

0 if (a1 < z < a2)

R2 if (z = a2 − ε2)

, (58)

where ε1, ε2 → 0 and then t → 0+. Note that in the previous section, i.e.,

to image above the first reflector at a1, we obtain the amplitude R1 when z

approach a1 from above. In this section we image below the first reflector

at a1, the amplitude of the image is −R1 when z approaches a1 from below,

as it should.

Predicting the source and receiver experiment below the sec-

ond reflector

For z > a1, the boundary value of the Green’s function is:

GDN0 (z, zg) =
1

2ik2(1 +R1)(1 +R2)/ρ2
(59)

× {[ν−1(R2λ− λ−1) +R1ν(λ−R2λ
−1)]µ+ [R1ν

−1(R2λ− λ−1) + ν(λ−R2λ
−1)]µ−1},

where λ = eik2(z−a2), µ = eik(zg−a1), and ν = eik1(a2−a1), k2 = ω/c2.

The result of the predicted experiment can be expressed as:

E(z, z) =(ρ2/2ik2)[1−R2e
ik2(2z−2a2) + (1−R2

2)eik2(2z−2a2)

×
∞∑
n=0

(−1)n+1Rn+1
1 Rn2e

ik1(2n+2)(a2−a1)]. (60)
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The time domain counterpart of the equation above is:

E(z, z, t) = −(ρ2c2/2){H(t)−R2H[t− (2z − 2a2)/c2] (61)

+ (1−R2
2)H[t− (2z − 2a2)/c2 − (2n+ 2)(a2 − a1)/c1].

Balancing out the −ρ2c2/2 factor, the data after removing the direct

wave is denoted as D̂(z, t) = (−2/ρ2c2)E(z, z, t)−H(t):

D̂(z, t) =−R2H[t− (2z − 2a2)/c2]

+ (1−R2
2)H[t− (2z − 2a2)/c2 − (2n+ 2)(a2 − a1)/c1], (62)

and after taking the t = 0+ imaging condition, we have:

D̂(z, t) =

 −R2 if (z = a2 + ε)

0 if (a2 < z)
, (63)

where ε→ 0+. Note that in the previous section, i.e., to image between

the first and second reflectors, we obtain the amplitude R2 when z approach

a2 from above. In this section we image below the second reflector at a2,

the amplitude of the image is −R2 when z approaches a2 from below, as it

should. Please see Figure 6.

This analysis allows us to see how the recorded events contribute to the

image for source and receiver experiments above and below each reflector.

Multiples: do they contribute to the image?
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How do the recorded events (primaries and free surface and internal

multiples) contribute to: (1) the predicted source and receiver experiment at

depth and (2) the image at depth that locates and identifies the reflector (the

reflection coefficient)?. In this section, we examine, follow and report (for

the latter two way-wave wave migration examples) how the individual events

(primaries, free surface multiples and internal multiples) each contribute

to: (1) the predicted coincident source and receiver experiment at each

depth, and then (2) the time equals zero imaging condition evaluation of

that experiment.

The example we present provides for the first time an analysis that

starts with and follows how surface recorded data (with primaries and free

surface and internal multiples) influences and contributes to the subse-

quent coincident source and receiver experiment at depth and then imag-

ing at each depth level, and specifically: (1) how each individual recorded

event in the surface data is involved and contributes to the new individual

“events” of the predicted source and receiver experiment at each different

depth, and then (2) what happens to the recorded surface event’s individ-

ual contribution for the predicted experiment at each depth and then how

the surface recorded events contribute when applying the time equals zero

imaging condition. Please see three cases we examine in the three videos

(http://mosrp.uh.edu/events/event-news/multiples-signal-noise-a-clear-example-

with-a-definitive-conclusion) and corresponding slide snapshots. In the three

examples a unit amplitude plane wave is normal incident on a one-D earth.

The first case (please see Figures 7-9) is the example of a single reflector

and a single primary, with no free surface or internal multiples. That single
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primary is the sole contributor to the events in the experiment above and

below that single reflector. When the time equals zero condition is applied,

the recorded primary is the only recorded event contributing to the experi-

ment at depth and to the image, both below and above the reflector. For the

case of primaries and internal multiples, the detailed mathmatical analysis

based on the new two way (Claerbout Imaging III) migration behind these

figures is found in equation 49 - 63, in the previous section.

The second case has a single primary and a free surface multiple (please

see Figures 10-12). The predicted experiment above the reflector has two

surface event contributions, from the primary and the free surface multi-

ple. When the time equals zero imaging condition is applied then only the

recorded primary contributes to the image. Below the reflector the pre-

dicted experiment has two events, a primary that has a downward reflection

at the reflector, and a primary from the source to the free surface and then

down to the predicted receiver. The original free surface multiple in the

recorded data became a primary in the predicted experiment below the re-

flector. Hence, the primary and free surface multiple in the recorded data

became two primaries for the experiment below the reflector. However, once

the time equals zero imaging condition is applied to the predicted experi-

ment, only the recorded primary contributes to the image and the recorded

multiple does not.

In the third case (please see Figures 13-17), we consider a subsurface

with two reflectors and two recorded primaries and one internal multiple.

As you focus on the history that each individual event in the recorded data

follows and then contributes to, first in the experiment at depth and then
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to the image at each depth, you reach the following conclusion. Recorded

primaries and free surface multiples and internal multiples all contribute

to events for the predicted experiment at depth. Sometimes multiples in

the recorded data even become primaries in the predicted experiment at

depth. However, only the recorded primaries contribute to the image at

every depth. If you removed the multiples in the recorded data, the coin-

cident source and receiver experiment at depth would change, but once the

t = 0 imaging condition is applied, the image’s location at the correct depth

or its amplitude, the reflection coefficient, will not be affected. If, in these

examples, your data consisted of only multiples, you would have no image

at any depth.

Hence, for the purposes of imaging and inversion, primaries are signal

and multiples are not. Multiples are not evil, or bad or irresponsible, but

as events they are simply not needed for locating and identifying targets.

The methods that seek to use multiples today as “signal” are really seek-

ing to approximate images due to primaries that have not been recorded,

due to limitations in acquisition, and to address the subsequent limited il-

lumination that missing primaries can cause. They are not really using the

multiple itself as an event to be followed into the subsurface for imaging

purposes. The figure (18) illustrates the idea.

Assume a multiple is recorded, and a long offset primary that is a sub-

event is also recorded. The idea is to extract and predict the image due to

an unrecorded primary, smaller offset, from the recorded multiple and the

recorded longer offset primary. All the various incarnations that are using

multiples as “signal” are actually, and entirely after removing a recorded
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longer offset primary to have the output as a shorter offset unrecorded pri-

mary. It’s the missing image of unrecorded primaries that the method is

seeking to produce and to utilize.

The recipe of taking the multiples back in time and the primaries forward

in time and arranging for Imaging Condition II (not III) produces that

output. However, that procedure is not migrating the multiples, in the

sense of the multiple as an event.

In a Recent Advances and the Road Ahead presentation, “Multiples: sig-

nal or noise?”, Weglein (2014) (please see https://vts.inxpo.com/scripts/

Server.nxp?LASCmd=L:0&AI=1&ShowKey=21637&LoginType=0&InitialDisplay=

1&ClientBrowser=0&DisplayItem=NULL&LangLocaleID=0&RandomValue=1415030021699)

showed a field data example, from PGS, where there was clear added-value

demonstrated from beyond actual primaries, plus the approximate images of

primaries predicted from multiples, compared to the image from the original

primaries.

There is another issue: in order to predict a free surface or internal

multiple, the primary sub-events that constitute the multiple must be in the

data, for the multiple prediction method to recognize an event as a multiple.

If the short offset primary is not recorded, the multiple that is composed of

the short and long offset multiple will not be predicted as a multiple. That

issue and basic contradiction within the method is recognized by those who

practice this method, and instead of predicting the multiple, they use all

the events in the recorded data, primaries and multiples, and the multiples

can be useful for predicting approximate images of missing primaries but

the primaries in the data will cause artifacts. There are other artifacts that
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also come along with this method that have been noted in the literature.

The reality of today’s methods for using multiples to predict missing “pri-

maries” are aimed at structural improvement, at best, and are not claiming,

seeking or delivering the amplitude and phase fidelity of the predicted pri-

mary. Those who go so far as to advocate using fewer sources and/or more

widely separated cables because recorded multiples can produce “something

like” a missing primary need to understand the deficits and costs including

generating artifacts, less effectiveness with deeper primaries and the ampli-

tude fidelity of the predicted primary. Whether the tradeoff makes sense

ought to depend on, in part, the depth of the target, the type of play, and

whether a structural interpretation or amplitude analysis is planned within

a drilling program and decision.

By the way, this entire wave equation migration analysis (Claerbout

Imaging Condition III) is ultimately based on the idea from Green (1828)

that to predict a wave (an experiment) inside a volume you need to know

the properties of the medium in the volume.

There is an alternative view: The inverse scattering series methods com-

municates that all processing objectives can be achieved directly and with-

out subsurface information. The inverse scattering series treat multiples as a

form of coherent noise, and provide distinct subseries to remove free surface

and internal multiples before the inverse scattering subseries for imaging

and inversion achieve their goals using only primaries Weglein et al. (2003)

and Weglein et al. (2012). If the inverse scattering series needed multiples

to perform migration and inversion, it would not have provided subseries

that remove those multiply reflected events. With a velocity model (wave
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equation migration) or without a velocity model (inverse scattering series

imaging) only primaries are signal , in the sense that they are the events

need to locate and delineate targets. If you want to consider a multiple as

a conditional ’signal’, that can at times enhance imaging, there is no harm

in that. But to say that multiples are being migrated, and/or are the same

footing as primaries, is simply not ture and relates more to marketing, than

to a realistic view of the role that primaries and multiples play in seismic

exploration. A complete set of recorded primaries, processed with a wave

theory migration (versus asymptotic or ray migration) would not need or

benefit from multiples. Multiples need to be removed before performing a

velocity analysis using, e.g., tomography, CIG flatness or FWI. And a veloc-

ity model is required by all the methods that seek to use multiples to enhance

imaging. Another question: what if the assumed unrecorded primary event

in the method is actually recorded. Will the image of the recorded primary

and the image of the approximate version of the recorded primary from the

multiple damaged the image of the actual primary, that has been assumed

to not have been recorded?

Conclusions

Hence, primaries are signal and multiples can be useful, at times, for pre-

dicting the image of missing primaries. But it’s primaries that are signal,

that we use for structure and inversion.

Primaries are signal for all methods that seek to locate and identify

targets.

The above three examples assumed you had an accurate discontinu-
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ous velocity and density model. Given an accurate discontinuous velocity

and density model, and data with primaries and multiples, then we have

convincingly demonstrated that only primaries contributed to the images at

every depth. If you predicted the source and receiver experiment at depth

with a smooth velocity, it is possible to correctly locate (but not invert)

each recorded primary event—but with a smooth velocity model every free

surface and internal multiple will then produce a false image/artifact/event.

If you removed the multiples first you can correctly locate structure from

recorded primaries using a smooth velocity model.

Hence, we conclude that the inability, in practice, to provide an accurate

discontinuous velocity model is why multiples need to be removed before

imaging. That reality has been the case, is the case, and will remain true

for the foreseeable future. Multiples need to be removed before velocity

analysis and they need to be removed before imaging.

Many things are useful for creating primaries: money, the seismic boat,

the air-guns, the observer, the cable, computers, etc., but we don’t call all

useful things signal.

Methods to provide a more complete set of primaries are to be supported

and encouraged. Those methods include: (1) advances in and more com-

plete acquisition, (2) interpolation and extrapolation methods, and (3) using

multiples to predict missing primaries. However, a recorded primary is still

the best and most accurate way to provide a primary, and the primary is

the seismic signal.

A multiple can be useful, at times, for providing an unrecorded synthe-

sized primary that is a subevent of the multiple. Given a data set consist-
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ing of: (1) the recorded primaries, (2) the synthesized primaries, (3) the

free surface multiples, and (4) internal multiples, the practical necessity of

using a smooth continuous velocity for migration demands that all multi-

ples be removed before migration. In exploration seismology, migration and

migration-inversion are methods we employ to locate and identify structure.

Claerbout Imaging Condition III is the most definitive and quantitative mi-

gration concept and procedure. This paper demonstrated that Claerbout

Imaging Condition III clearly communicates that primaries are signal and

multiples are noise. The original and intuitive migration idea that takes

events in time traces to the location of structure in space, only has meaning

for primaries. The most sophisticated and physically well-founded migra-

tion theory, beased on Claerbout Imaging Condition III, agrees with that

assessment and conclusion.
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Figures

Figure 1: The infinite hemispherical migration model. The measurement

surface is denoted by MS.

Figure 2: A finite volume model.

Figure 3: 1D upgoing plane wavefield.

Figure 4: Backpropagation model evolution.

Figure 5: Green’s theorem predicts the wavefield at an arbitrary depth z

between the shallower depth a and deeper depth b.

Figure 6: Imaging with primaries and internal multiples. A double

Green’s theorem is utilized with the data, and a Green’s function that along

with its normal derivative vanishes on the lower surface (and on the walls,

in multi-D). That is what wave-equation migration means for waves that are

two-way propagating in the medium.

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Figure 13:

Figure 14:

Figure 15:
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Figure 16:

Figure 17:

Figure 18:
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Multiples can be useful (at times) to enhance imaging by providing an 

approximate image of an unrecorded primary, but it is only primaries that are 

migrated for structure and amplitude analysis 

Arthur B. Weglein, M-OSRP/Department of Physics/University of Houston 

 

Primaries are seismic-reflection events with one upward reflection in their history, 

whereas multiples are events that have experienced more than one upward reflection. 

Migration was originally, and remains today to be, basically and unequivocally 

about taking a primary event on a recorded seismic trace in time and locating where in 

space that reflection event was generated by a reflector. That concept assumes that the 

event in time has only one reflection in its history. Hence, since by definition only 

primaries have experienced one reflector in their history, migration relates to and has 

meaning only for primaries. Migration has no meaning for multiples. We will see in this 

paper that not only did the original definition of migration have meaning just for 

primaries, but that, in addition, when we use the most complete physically interpretable 

and quantitative imaging condition for wave-equation migration (WEM), only primaries 

contribute to the image at any reflector, in depth, and neither free-surface nor internal 

multiples contribute. Migration has meaning only for primaries, and primaries are the 

only seismic events that contribute to depth imaging and inversion at a reflector. 

Reminding us of that fundamental fact is one key message of this paper. 

All wave methods for migration seek to mathematically capture and formulate 

that basic idea. When that idea is applied appropriately, and as intended, they have 

M-OSRP Annual Report, 2015
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meaning and relate to only primaries. To explain that consistency and to point out where 

things have become in our view somewhat confused and off track with regard to 

multiples, we must begin by briefly reviewing the various concepts in wave-theory 

migration. 

In this paper, we briefly review methods for migrating data inside a volume in 

which waves are (1) one-way propagating, and (2) two-way propagating. Methods that 

use wave theory to migrate data have two ingredients: a wave-propagation component 

and an imaging condition. We briefly discuss each of those two components here, 

beginning with imaging condition.  

Three landmark imaging conditions were introduced by Jon Claerbout (1971), 

Dan Lowenthal (1985), and Bob Stolt (1978) and their colleagues in the 1970s. Those 

three imaging conditions are (1) the exploding-reflector model, for zero-offset data, (2) 

the space-and-time coincidence of upgoing and downgoing waves, and (3) the 

prediction of a coincident-source-and-receiver experiment at depth, at time equals zero. 

We will refer to these three imaging conditions as Claerbout’s imaging conditions I, II, 

and III, respectively, and occasionally, for brevity, we will simply call them “Claerbout I”,  

“Claerbout II” and “Claerbout III.”  

The third Claerbout imaging condition predicts an actual seismic experiment at 

depth, and that predicted experiment consists of all the events that such an experiment 

would record if we had a source and receiver at the subsurface. To realize structural 

and inversion objectives, Stolt and his colleagues (Clayton and Stolt, 1981; Stolt and 

Weglein, 1985; Stolt and Benson, 1986; Weglein and Stolt, 1999; Stolt and Weglein, 
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2012) have extended, for one-way waves, Claerbout’s source-and-receiver-experiment 

imaging condition (imaging condition III), to allow for a source and receiver that are not 

coincident at time equals zero.  

Recently, Weglein and his colleagues (Weglein et al., 2011a,b; Liu and Weglein, 

2014) provided the next step in the evolution of migration that is based on Claerbout’s 

imaging condition of a predicted source-and-receiver experiment (imaging condition III) 

–– they extended the prediction of the source-and-receiver experiment to that of a 

volume within which there are two-way propagating waves. That method of imaging, 

based on Claerbout’s Imaging condition III for a medium with two-way-propagating 

waves (required for data with primaries and multiples) and, hence, plays a central role in 

the analysis in this paper. The predicted experiment in the volume is realized by calling 

upon Green’s theorem and a Green’s function that, along with its normal derivative, 

vanishes on the lower portion of the closed surface. 

Summary of wave-equation migration for one-way-propagating and two-

way-propagating waves 

Backpropagation and imaging each evolved and then were extended and 

generalized, and ultimately merged, to become migration-inversion (Figure 1). 

For one-way wave propagation, the double-downward-continued data, D , are 

D(at depth) =
¶G0

-D

¶zs
Ss
ò

¶G0

-D

¶zg
Sg
ò DdSg dSs

 (1)
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where D  in the integrand is equal to the data on the measurement surface. 0 /D

sG z    

is an anticausal Green's function with a Dirichlet boundary condition on the 

measurement surface, s is a shot, and g is a receiver. For predicting the source and 

receiver experiment at depth in a volume with two-way propagating waves, we have 

(see e.g., Weglen et al 2011a,b)  

 

D(at depth) =
¶G0

DN
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û
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dSs ,

                (2)

 

where D  in the integrand is equal to the data on the measurement surface.
 0

DNG  is 

neither causal nor anticausal ––  it is the Green's function needed for wave-equation 

migration reverse-time migration (WEM RTM); that is, for RTM based on Claerbout’s 

imaging condition III. 0

DNG  is the Green's function for the model of the finite volume that 

vanishes along with its normal derivative on the lower surface and the walls. If we want 

to use the anticausal Green's function of the two-way propagation with Dirichlet 

boundary conditions at the measurement surface, we can do that, but we will need 

measurements at depth and on the vertical walls. To provide the experiment at depth 

without data at the lower boundary and on the vertical sides/walls requires a 

nonphysical Green's function that vanishes, along with its derivative, on the lower 

surface and walls.  

226



5 
 

Fang Liu and A. B. Weglein (2014) and Weglein (2015) have taken us to the next 

step in our goal and objective. Having established a methodology for Claerbout’s 

imaging condition III (please see equation 2) for a medium (a finite volume) with two-

way propagating waves, we are in a position to predict source-and-receiver experiments 

at depth and then to obtain an imaging result with Claerbout’s imaging condition III for 

data consisting of primaries and multiples. For the 1D layered medium and normal-

incident wave that we are examining, the data (consisting of primaries and internal 

multiples) and the results of the predicted source-and-receiver experiment at depth and 

of the migration algorithm are all analytic and transparent, and the conclusions are 

unequivocal and unambiguous. The role of recorded primaries and multiples in 

contributing first to the predicted source-and-receiver experiment at depth, and then to 

the coincident-source-and-receiver experiment at time equals zero (the third Claerbout 

imaging condition), provides a definitive response to the question of whether multiples 

contribute to seismic imaging.  

Liu and Weglein (2014) and Weglein (2015) provide the explicit Green's theorem 

source-and-receiver-at-depth prediction and then the imaging result of Claerbout’s 

imaging condition III for a general, layered medium in which the velocity and density 

vary and the data consist of primaries and internal multiples. Those papers arrive at 

three conclusions: 

(1) All recorded events –– primaries, internal multiples, and free-surface multiples ––

contribute to the predicted coincident-source-and-receiver experiment at depth. 
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(2) Only the recorded primaries contribute to the image –– that is, once the time-equals-

zero imaging condition is called on, only recorded primaries contribute to the image 

at any depth. 

(3) The location of each reflector is determined, along with the reflection coefficients for 

the experiment both from above and from below each reflector (Figure 2). The 

reflection coefficients are not obtainable by using Claerbout’s imaging condition II 

(the bases of all current RTM). 

If we remove the multiples in the recorded data, the coincident-source-and-

receiver experiment at depth will change. However, once the imaging condition is 

applied, the image’s location at the correct depth, and its amplitude, the reflection 

coefficient, will not be affected. If, in these examples, our data consist only of multiples, 

we will have no image at any depth. These conclusions are all demonstrated in great 

detail in Liu and Weglein (2014) and Weglein (2015). 

Hence, for the purposes of imaging and inversion (and employing the most 

capable and quantitative imaging condition), primaries are the events that contribute to 

imaging and inversion, and are considered to be signal, whereas multiples are not. 

 

Results from Claerbout’s imaging conditions II and III  

Claerbout’s imaging condition II, the time-and-space coincidence of up and down 

waves, is formulated as 
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   *( ) , ; , ;
s

s s

x

I x D x x U x x


 
, (3)

 

where D  is the downgoing wave and is U  is the upgoing wave, respectively, and * 

represents the complex conjugate. 

The sum over receivers for a given shot record realizes Claerbout’s second 

imaging condition. The sum over sources is “introduced” in an ad hoc manner to 

mitigate the inconsistent amplitudes and phases of images, which can be clearly seen in 

imaging results from exact data and the imaging of a single horizontal reflector (please 

see the example in Chao Ma and Yanglei Zou (2015)). By comparison, the result from 

Claerbout’s third imaging condition, for the same reflector and the same data, produces 

an accurate and consistent reflection coefficient at every point on the reflector, for a 

single shot record. 

Let us compare Claerbout II imaging (formula 3, above) with the one-way- and 

two-way-wave versions of Claerbout’s imaging condition III, represented in equations 1 

and 2. 

For Claerbout imaging III, for a volume with two-way propagating waves, given 

by equation 2, the sum over receivers predicts the receiver experiment at depth for a 

source on the measurement surface, and the sum over sources then precisely predicts 

the experiment with the source at depth, as well. The integrations over receivers and 

over sources predict the source-and-receiver experiment at depth. There is nothing ad 

hoc or designed to fix something amiss (as though the data had random noise, to be 

mitigated by stacking). The noise is algorithmic within Claerbout II and is present with 
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exact, analytic, noise-free data in the earlier integral over receivers, as in formula 

3.  This is why we say that Claerbout III is on the firmest physics foundation, with an 

interpretable, quantitative and consistent meaning to the image. And once again, that 

clarity is why we adopt Claerbout III for analysis of the role of primaries and multiples in 

imaging (see Liu and Weglein (2014) and Weglein (2015)). 

Claerbout’s imaging conditions I, II, and III give equivalent imaging results for a 

normal-incident plane wave on a horizontal reflector. As soon as we consider prestack 

data for even a single horizontal reflector, however, the significant differences in image 

interpretability and consistency between the imaging conditions become clear. 

Furthermore, only Claerbout III can be readily and naturally extended for amplitude 

analysis at specular, curved surfaces and point diffractors/pinchouts and for imaging 

both from above, and from beneath, a discontinuous velocity model. 

The three Claerbout imaging condition are intended and meaningful only for 

primaries. However, the language and thinking behind Claerbout imaging II can be the 

inspiration/motivation for explaining the time and space coincidence of different events, 

other than primaries, not to migrate them, but for other useful and beneficial purpose. 

With a complete set of recorded primaries and a wave theory (not ray, Kirchhoff, 

Beam or other approximation) migration there is, (in principle), no illumination issue. 

However, when either a less than complete set of primaries is recorded and/or an 

asymptotic migration method is employed, then illumination issue can and will arise. We 

will see that under the latter circumstances, that imaging enhancement can be provided 
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by using a recorded multiple together with a recorded primary subevent of that multiples 

to produce an approximate image of an unrecorded primary subevent of the multiple.  

In this next section, we illustrate that process and evolution beginning with a brief 

and elementary review.  

Using Claerbout II imaging to migrate a primary, followed by the method it 

inspired to use a Claerbout II type method to produce an approximate image of an 

unrecorded primary. 

Imaging primaries with Claerbout’s imaging condition II 

A 1D normal-incident analytic example 

In this section, we use a 1D normal-incident analytic example to illustrate the 

idea of imaging a primary with Claerbout’s imaging condition II. Let us assume we have 

data from a downgoing spike wave that starts at  𝑧 = 𝜀𝑠 at 𝑡 = 𝑡0 = 0 . The downgoing 

wavefield from the source side that is being forward propagated to depth 𝑧 is 𝐷 =

𝑒
𝑖𝜔[

𝑧−𝜀𝑠
𝑐0

]
, whereas the upgoing wavefield from the receiver side that is being back 

propagated to depth 𝑧 is 𝑈 = 𝑅1𝑒
𝑖𝜔[

𝑑−𝜀𝑠
𝑐0

+
𝑑−𝑧

𝑐0
]
, where 𝑅1 and 𝑑 are the reflection 

coefficient and the depth of the reflector, respectively (see Figure 3). Applying 

Claerbout’s imaging condition II, we have 

 
𝐼𝑃 = ∫ (𝑒

−𝑖𝜔[
𝑧−𝜀𝑠

𝑐0
]
) × (𝑅1𝑒

𝑖𝜔[
𝑑−𝜀𝑠

𝑐0
+

𝑑−𝑧
𝑐0

]
) 𝑑𝜔 = ∫ 𝑅1 𝑒

−𝑖𝜔[
2𝑑−2𝑧

𝑐0
]
𝑑𝜔

=  𝜋𝑐0𝑅1𝛿(𝑧 − 𝑑) 
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(4) 

We obtain the correct image location at depth 𝑑 with an amplitude of  𝜋𝑐0𝑅1. 

 

Using a multiple to approximately image an unrecorded primary 

1D normal-incident analytic example 

Now, we apply Claerbout’s imaging condition II to a seismic data set that 

contains a first-order free-surface multiple. Again, we assume a downgoing spike wave 

that is at  𝑧 = 𝜀𝑠 at 𝑡 = 𝑡0 = 0 (see Figure 4). A first-order free-surface multiple is 

recorded at 𝑧𝑔. The downgoing wavefield from a “virtual source”  (represented by the 

dashed red line in Figure 4) that is being forward propagated to depth 𝑧 is 𝐷 =

−𝑅1𝑒
𝑖𝜔[

𝑑−𝜀𝑠
𝑐0

+
𝑑+𝑧

𝑐0
]
. The upgoing wavefield from the receiver side (represented by the 

yellow dashed line in Figure 4) that is being back propagated to depth 𝑧 is 𝑈 =

−𝑅1
2𝑒

𝑖𝜔[
𝑑−𝜀𝑠

𝑐0
+

2𝑑

𝑐0
+

𝑑−𝑧

𝑐0
]
. Here, we have assumed the downward reflection coefficient at the 

free-surface to be −1 in deriving the up and down wavefields (Figure 4). Applying the 

time and space coincidence of these two wavefields, we have 

 
𝐼𝑀 = ∫ (−𝑅1𝑒

−𝑖𝜔[
𝑑−𝜀𝑠

𝑐0
+

𝑑+𝑧
𝑐0

]
) × (−𝑅1

2𝑒
𝑖𝜔[

𝑑−𝜀𝑠
𝑐0

+
2𝑑
𝑐0

+
𝑑−𝑧

𝑐0
]
) 𝑑𝜔

= ∫ 𝑅1
3 𝑒

−𝑖𝜔[
2𝑑−2𝑧

𝑐0
]
𝑑𝜔 =  𝜋𝑐0𝑅1

3𝛿(𝑧 − 𝑑) 

 

(5) 
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We obtain the correct image location at depth 𝑑, however with a different amplitude of 

𝜋𝑐0𝑅1
3, rather than 𝜋𝑐0𝑅1. This procedure can provide an approximate image of a 

primary subevent if the velocity of the primary subevent can be estimated. This very 

simple example can be readily extended to the case of the two different primary 

subevents, where the velocity of the unrecorded primary subevent will allow for its 

approximate image.  

The methods that seek to use multiples today as “signal” are really seeking 

to approximate images resulting from primaries that were not recorded due to limitations 

in acquisition, and then to address the subsequent, limited illumination that missing 

primaries can cause. The methods are not really using the multiple itself as an event to 

be followed into the subsurface for imaging purposes.  Figure 5 illustrates the idea. 

Assume that a multiple is recorded, and that a primary that is a subevent is also 

recorded. The idea is to extract and predict, from the recorded multiple and the 

recorded primary, the image representing an unrecorded subevent primary. All the 

various incarnations that use multiples as “signal” actually and entirely are attempting to 

obtain the approximate image of an unrecorded primary. It is the missing image 

of unrecorded primaries that the methods seek to produce and to utilize. Such a use of 

multiples is in itself testament to the fact that a complete set of primaries is sufficient for 

imaging the subsurface. Using a multiple to achieve an approximate image of an 

unrecorded primary is an enhanced image due to a more complete set of primaries and 

is not migration of the multiples. 
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In an SEG Recent Advances and the Road Ahead presentation titled “Multiples: 

signal or noise?”, Weglein (2014) presented actual field-data examples from PGS in 

which clear, compelling added value was demonstrated for the image from actual 

primaries, combined with the approximate images of unrecorded primaries, in 

comparison with the image from the original primaries. (Please 

see https://vts.inxpo.com/scripts/Server.nxp?LASCmd=L:0&AI=1&ShowKey=21637&Lo

ginType=0&InitialDisplay=1&ClientBrowser=0&DisplayItem=NULL&LangLocaleID=0&R

andomValue=1415030021699) Please also see Whitmore et al. (2010) and Valenciano 

et al. (2014) for examples of using multiples to enhance image.  

Issues 

To predict a free-surface multiple or an internal multiple, the primary subevents 

that constitute the multiple must be in the data in order for the multiple-prediction 

method to recognize an event as a multiple. If a primary is not recorded, the multiple 

that contains that unrecorded primary will not be predicted as a multiple. That issue and 

basic contradiction within the method is recognized by its practitioners. Instead of 

predicting the multiple, they use all the events in the recorded data –– primaries and 

multiples –– and the multiples then can be useful for predicting approximate images of 

missing primaries. However, the primaries in those data will cause artifacts. Other 

artifacts also accompany this method, because of the inability to isolate primaries from 

multiples with unrecorded primaries.  

In fact, an enormous number and variety of false events are generated by such a 

procedure (see e,g., Lu et al., 2011; Liu et al., 2011). Among those false events are 
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“images of multiples,” as Figure 6 exemplifies. There also are other false images –– 

artifacts that do not correspond to a particular event (e.g., to a multiple). 

Today’s methods for using multiples to predict an approximate image of 

unrecorded primaries are aimed at structural improvement, at best, and do not claim, 

seek, or deliver the amplitude and phase fidelity of the predicted primary. Whether the 

tradeoffs make sense ought to depend, in part, on the depth of the target, the type of 

play, and whether a structural interpretation or amplitude analysis is planned within a 

drilling program and decision. 

We should note here that this entire wave-equation migration analysis 

(Claerbout’s imaging condition III) is ultimately based on the idea from Green (1828) 

that to predict a wave (an experiment) inside a volume, we need to know the properties 

of the medium in that volume. 

There is an alternative view: The inverse-scattering-series methods communicate 

that all processing objectives can be achieved directly and without subsurface 

information. The inverse scattering series treat multiples as a form of coherent noise 

and provide distinct subseries that remove free-surface and internal multiples, before 

the inverse scattering subseries for imaging and inversion achieve their goals by using 

only primaries (Weglein et al. (2003) and Weglein et al. (2012)). If the inverse scattering 

series needed multiples to perform migration and inversion, they would not have 

provided subseries that remove those multiply reflected events. With a velocity model 

(wave-equation migration) or without a velocity model (inverse scattering series 

imaging), only primaries are signal, in the sense that they are the events we need in 
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order to locate and delineate targets. If we want to consider a multiple as a conditional 

“signal” that at times can enhance imaging, there is no harm in it. To say that multiples 

are being migrated, however, and/or are on the same footing as primaries, is simply not 

true. A complete set of recorded primaries, processed with a wave-theory migration 

(versus asymptotic or ray migration), would neither need nor benefit from multiples. 

Multiples must be removed before a velocity analysis is performed that uses, for 

example, tomography, common-image-gather (CIG) flatness, or full-waveform inversion 

(FWI). Further, a velocity model is required by all the methods that seek to use multiples 

to enhance imaging. Hence, multiples need to be removed in a separate step prior to 

this use of multiples for approximate imaging of unrecorded primaries.  

Conclusions 

Primaries are signal and multiples can be useful, at times, for predicting the 

approximate images of missing primaries. Hence, primaries are the events used for 

structural determination and amplitude analysis.  

Given an accurate, discontinuous velocity-and-density model, and data with 

primaries and multiples, Fang Liu and Weglein (2014) and Weglein (2015) demonstrate 

that only primaries contribute to the images at every depth. If we predict the source-and-

receiver experiment at depth with a smooth velocity, it is possible to correctly locate (but 

not invert) each recorded primary event. With a smooth velocity model, however, every 

free-surface and internal multiple will produce a false image/artifact/event. If we remove 

the multiples first, we can correctly locate structure from recorded primaries by using a 

smooth velocity model. 
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We conclude, therefore, that the inability, in practice, to provide an accurate, 

discontinuous velocity model defines why multiples must be removed prior to imaging. 

That reality has been the case, is the case, and will remain to be true for the 

foreseeable future. Multiples need to be removed before velocity analysis, and they 

need to be removed before imaging and inversion. 

Methods to provide a more complete set of primaries are to be supported and 

encouraged. Those methods include: (1) advances in acquisition techniques, and 

achieving more complete acquisition, (2) interpolation and extrapolation methods, and 

(3) use of multiples to predict approximate images of missing primaries. However, a 

recorded primary is still the best and most accurate way to provide a primary, and the 

primary is the seismic signal. 

What if our acquisition of primaries is not adequate? In this paper, we 

demonstrate that multiples can be useful for improving our imaging, by providing an 

approximate image of an unrecorded primary that is a subevent of the multiple. 

However, the multiple is itself not migrated.   
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Figure 1: Earth model and subsurface information. The various earth models in the 

evolution of depth imaging. The first panel, the infinite-hemisphere model, was the first model 

adopted by migration methods (1978). The second panel, the finite-volume model, in which 

subsurface information is known only for the area above any given reflector, is the current 

industry standard. The fourth panel illustrates the basis of depth imaging with the inverse 

scattering series, wherein the velocity model is unknown and remains so, everywhere; this is the 

future model of seismic imaging. The fourth model is the model for methods that use the inverse 

scattering series to eliminate free-surface multiples and attenuate internal multiples.  
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Figure 2: Green’s theorem predicts the wavefield at an arbitrary depth z between the 

shallower depth a and the deeper depth b. The experiment illustrated here corresponds to a 

plane-wave that is normal incident on a layered medium with two reflectors. The measurement 

coordinates are zg and zs , and the coincident-source-and-receiver depths a- ε, a+ε, b− ε, and 

b+ε are the depth of the predicted source-and-receiver experiment at depths above and below 

the first reflector at z=a and the second reflector at z= b. 

 

 

 

. 

240



19 
 

  

Figure 3: Use of a primary to find an image.  

 

 

 

Figure 4: Use of a multiple to find an approximate image of an unrecorded primary. 
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Figure 5: Using multiples for imaging. 
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Figure 6: Examples of different types of false images generated by the use of multiples 

to predict the approximate image of an unrecorded primary. Figure 6a will produce an artifact 

243



22 
 

due to imaging of a multiple, and figure 6b will produce an artifact at z=0 (the origin) that is 

beyond the false image that is due to outputting images of multiples. 
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(Short note) Inverse scattering series internal multiple attenuation in
an absorptive dispersive earth, without knowing, needing or

estimating elastic or inelastic subsurface properties: update with
pre-stack data examples

Jing Wu & Arthur B. Weglein

Abstract

In this paper, the Inverse Scattering Series (ISS) internal multiple attenuation algorithm is
analytically and numerically evaluated on pre-stack reflection data from an attenuating medium.
The results for an attenuating medium show that the method retains its value to directly predict
internal multiples (IM) with the exact phase and an approximate amplitude, without knowing
the medium and its absorptive and dispersive properties.

1 Introduction

The inverse scattering series can achieve all processing objectives directly by using distinct iso-
lated task-specific sub-series and without subsurface information (Weglein et al., 2003). The ISS
internal multiple attenuator has shown stand-alone capabilities on both marine and on-shore plays
(e.g., Ferreira, 2011; Fu et al., 2010). Previous synthetic data tests on this algorithm have involved
multidimensional acoustic and elastic media (e.g., Araújo, 1994; Weglein et al., 1997).

For the medium involving absorptive and dispersive properties, the wavefield will be attenuated
and broadened while propagating. Using a 1D normal incidence data from an absorptive earth, Wu
and Weglein (2014) demonstrate that applying the industry standard ISS internal multiple attenuator
will attenuate the multiples. In this paper, we use pre-stack data as the input to evaluate the ISS
internal multiple attenuation algorithm, and conclude again that the predicted internal multiple has
the correct phase and an approximate amplitude.

2 Wavefiled expression in the absorptive medium

2.1 Green’s function

For an absorptive-dispersive medium, Green’s function G0(r, rs, ω) satisfies wave equation(
∇2 +

ω2

c2(ω)

)
G0(r, rs, ω) = δ(r− rs), (1)

where r is the receiver point, rs is the source point. Assuming a constant Q (or frequency-independent
Q) model (e.g. Kolsky, 1956; Kjartansson, 1979), and within a reasonable seismic bandwidth,

1
c2(ω)

=
1
c2

0

(
1 +

F (ω)
Q

)
, (2)
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where

F (ω) =
i

2
sgn(ω)− 1

π
log

(
ω

ωr

)
. (3)

It is constitute of two terms: the first term is related to the energy attenuation, and the second term
is related to velocity dispersion. ωr here is the reference frequency, and it could be chosen as the
maximum frequency or the central frequency in the experiment. c0 is the velocity at the reference
frequency.

Q is the quality factor that represents the energy loss for a wave-field propagating in one wave
length, and it is defined as

Q =
2πE
∆E

, (4)

where E is the energy of the wave-field, and ∆E is the energy loss in a wavelength of propagation.

Solving Equation 1, we will have

G0(r, rs, ω) =
1

(2π)2

∫ ∞
−∞

∫ ∞
−∞

eikz |z−zs|

2ikz
eikx(x−xs)eiky(y−ys)dkxdky, (5)

where the vertical wavenumber

kz = sgn(ω)

√
ω2

c2(ω)
− k2

x − k2
y

= sgn(ω)

√
ω2

c2
0

− k2
x − k2

y +
ω2

c2
0

F (ω)
Q

= sgn(ω)

√
q2 +

ω2

c2
0

F (ω)
Q

.

(6)

q = sgn(ω)
√

ω2

c20
− k2

x − k2
y . In Equation 5, Green’s function still can be treated as a sum of

weighted plane waves from all the directions. kz is a complex value caused by the complex F (ω).

2.2 Wavefield of a one-reflector 1D absorptive model

Figure 1: A one-reflector horizontal model.

Given a one-reflector 1D earth model as shown in Figure 1, and the depth of the interface is
z1, we can express the wavefield based on Equation 5. Assuming both the source and receiver are
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located at the depth 0 (or εs = εg = 0), a 3D point source can generate the data with cylindrical
symmetry that cares the offset only.

D(r, ω) =
1

2π

∫ ∞
−∞

R1(kr, ω)ei2kzz1

2ikz
J0(krr)krdkr, (7)

where r =
√

(xg − xs)2 + (yg − ys)2, kr is the Fourier conjugate of r, and data in wavenumber
domain can be transformed back to space domain via Hankel transform.

D(kr, ω) =
R1(kr, ω)ei2kzz1

2ikz
. (8)

The reflection coefficient for plane wave is

R1(kr, ω) =
kz − kz1
kz + kz1

, (9)

where kz = sgn(ω)
√

ω2

c20
− k2

r + ω2

c20

F (ω)
Q0

, and kz1 = sgn(ω)
√

ω2

c21
− k2

r + ω2

c21

F (ω)
Q1

.

3 Analytic test of ISS internal multiple attenuation algorithm on pre-stack data

In this section, the pre-stack data D(r, t) from the absorptive-dispersive earth will be used to test
the ISS internal multiple attenuator analytically. The algorithm of 3D point source and 1D earth is
chosen for the analytic evaluation in this section and the subsequent numerical tests. Besides, we
assume that the first layer where the source is located does not involve the absorption and dispersion;
i.e., Q0 in the first layer is infinity or Q0 � 0.

For 3D source and 1D earth, the ISS internal multiple attenuation algorithm (Lin and Weglein,
Lin and Weglein) is

b3(kr, 2q) =
∫ ∞
−∞

b1(kr, z)ei2qzdz
∫ z−ε

−∞
b1(kr, z1)e−i2qz1dz1

∫ ∞
z1+ε

b1(kr, z2)ei2qz2dz2, (10)

where q = sgn(ω)
√

ω2

c20
− k2

r ; and c0 is the velocity of the first layer, at the reference frequency ωr.

b1(kr, ω) = 2iqD(kr, ω). Since we assume that Q0 � 0, the vertical wavenumber in the first

layer kz = sgn(ω)
√
q2 + ω2

c20

F (ω)
Q0
≈ q, which is approximately a real value. Therefore, multiplying

D(kr, ω) with 2iq, the denominator of D(kr, ω) as shown in Equation 8 is approximately removed
in b1(kr, ω). Applying an uncollapsed migration, then b1(kr, z) that is in the pseudo depth domain
can be obtained. b3(kr, 2q) is the predicted internal multiple.

ε in the formula is used to ensure that the events satisfy the lower-higher-lower relationship, and
its value is chosen on the basis of the length of the wavelet.

As shown in Figure 2, a two-reflector 1D earth model is taken as an example, with zero depths
of both the source and the receiver.

Two primaries can be expressed in (kr, ω) domain with forms

P (1)(kr, ω) = R1(kr, ω)ei2kzz1 ,

P (2)(kr, ω) = T01(kr, ω)T10(kr, ω)R2(kr, ω)ei2kzz1ei2kz1 (z2−z1),
(11)
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Figure 2: A two-reflector 1D model.

where kz1 = sgn(ω)
√
q2

1 + ω2

c21

F (ω)
Q1

, and k2
r + q2

1 = ω2

c21
. All the reflection and transmission coeffi-

cients are complex values.

b1(kr, ω) = P (1)(kr, ω) + P (2)(kr, ω). (12)

Changing the variable from ω to 2q (q = sgn(ω)
√

ω2

c20
− k2

r ),

b1(kr, 2q) = P (1)(kr, 2q) + P (2)(kr, 2q),

P (1)(kr, 2q) = R1(kr, q)eikz2z1 ,

P (2)(kr, 2q) = T01(kr, q)T10(kr, q)R2(kr, q)eikz2z1eikz12(z2−z1),

(13)

where

kz = sgn(q)

√
(k2
r + q2)(1 +

F (kr, q)
Q0

)− k2
r ,

kz1 = sgn(q)

√
(k2
r + q2

1(q))(1 +
F (kr, q1(q))

Q1
)− k2

r ,

F (kr, q) =
i

2
sgn(q)− 1

π
log(

√
(k2
r + q2)
|ωr| ),

F (kr,−q) = F ∗(kr, q).

(14)

Similarly the internal multiple of the data can be expressed as

IM(kr, 2q) = −T01(kr, q)T10(kr, q)R1(kr, q)R2
2(kr, q)eikz2z1eikz14(z2−z1). (15)

Applying the uncollapse migration (or Fourier transforming b1 from 2q to z),

b1(kr, z) = P (1)(kr, z) + P (2)(kr, z). (16)

We substitute b1 with two primaries into the internal multiple attenuation algorithm as shown in
Equation 10. Assuming that the two primaries are isolated and ε is chosen reasonably, there is no
overlap between the two events among the integrals, then the predicted internal multiple b3(kr, 2q)
can be obtained finally.

b3(kr, 2q) = P (2)(kr, 2q)P (1)(kr,−2q)P (2)(kr, 2q)

= (T01(kr, q)T10(kr, q))2R∗1(kr, q)R2
2(kr, q)eikz2z1eikz14(z2−z1)ei(kz−k

∗
z)2z1

= (T01(kr, q)T10(kr, q))2R∗1(kr, q)R2
2(kr, q)eikz2z1eikz14(z2−z1)e−IMAG(kz)4z1 ,

(17)
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where IMAG(kz) is the imaginary part of kz .

Comparing the analytic forms between the predicted and the actual internal multiples, we find

b3(kr, 2q) = −T01(kr, q)T10(kr, q)
R∗1(kr, q)
R1(kr, q)

e−IMAG(kz)4z1IM(kr, 2q). (18)

If we define

TF = T01(kr, q)T10(kr, q)
R∗1(kr, q)
R1(kr, q)

,

AF = e−IMAG(kz)4z1 ,

(19)

then
b3(kr, 2q) = −TF∗AF ∗ IM(kr, 2q). (20)

TF is the transmission factor, and AF is the Q absorption factor. For this two-reflector model,
TF represents the transmission loss at the first interface; whereas AF represents the transmission
loss (energy absorption) in the first layer. Since we assume Q0 � 0 in the first layer, AF is actually
close to 1. However, if there are more than two reflectors existing in the absorptive media, both TF
and AF will have more complicated forms.

If we use IM (j) to represent the multiple that is generated at the jth interface (i.e., the down-
reflection happens at the interface of depth zj), and j ≥ 1, then

TF =

{
T01T10

R∗1
R1

j = 1∏i=j
i=1(Ti−1,iTi,i−1)

R∗j
Rj

j > 1

AF =

{
e−IMAG(kz)4z1 ≈ 1 j = 1
e−

Pi=j−1
i=1 (IMAG(kzi)4(zi+1−zi))e−IMAG(kz)4z1 j > 1

(21)

TF relates to the transmission loss at the interfaces that are above and on the multiple generator;
and AF relates to the transmission loss in the layers above the multiple generator. Both TF and AF
are smaller than 1, and they will corporate to produce a smaller prediction amplitude.

From the analysis above, even though the data goes through an absorptive medium, as long as
the first layer of the earth is not seriously involving the absorptive and dispersive properties, the ISS
attenuator can choose a reference medium to be homogeneous acoustic and without absorption/dis-
persion. Given all that, the prediction has the accurate time and approximate amplitude. Actually,
even the first layer is suffering from not slight absorption (e.g., for the model tested in the following
numeric section, Q0 = 100), our numeric test still shows satisfying result.

4 Numerical evaluation

In this section, we will use a four-reflector 1D absorptive model to test the ISS internal multiple
attenuation algorithm of Equation 10. The parameters of the model are listed in Figure 3.

The data generated by a point source is plotted in Figure 4a (using the software of Schlum-
berger), and it has four primaries (P1-P4) and a set of internal multiples (IM). Figure 4b shows the
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Figure 3: A four-reflector 1D model for numeric test.

(a) (b)

Figure 4: ISS internal multiple attenuation result. (a) input data with both primaries and internal
multiples; (b) predicted internal multiples.
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(a)

(b)

Figure 5: ISS internal multiple attenuation result. (a) trace with offset of 0m; (b) trace with offset
of 1250m.
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ISS internal multiple prediction result. All the internal multiples are indicated by the arrows. Two
traces are selected for detailed comparison in Figure 5a and Figure 5b, where the blue lines represent
the input data, suffering absorption, the black lines are corresponding to the prediction results, and
the green arrows are pointing to the events of internal multiple. We conclude from the results that
the prediction time is accurate, and the amplitude is approximate (smaller than the actual). (This
test was performed at WesternGeco/Schlumberger.)

5 Discussion and conclusion

In this paper, the ISS internal multiple attenuation algorithm is tested analytically and numerically
using Q-influenced data, with the conclusion that the prediction will have the correct phase and an
approximate amplitude.

The discussion in this paper gives us confidence that even for an attenuating medium, the ISS
internal multiple attenuator can provide a result that retains the primary and partially removes the
internal multiple. This is an important step in a strategy to eliminate internal multiples for both
elastic and anelastic media. That will allow application for exploration plays where the geology
exhibits significant absorption, e.g., pre-salt plays in the deep water Gulf of Mexico, off-shore
Brazil, the Red Sea and the North Sea.

In order to step further for internal multiple elimination in the attenuating medium, there are
sets of different approaches and ideas. (1) developing an ISS eliminator in the absorptive media; (2)
preprocessing for Q compensation, and then applying the ISS elimination algorithm in the elastic
media (Zou and Weglein, 2013). In terms of Q compensation, it can be achieved by method either
with Q information or without Q information (e.g., Innanen and Weglein, 2003, 2005; Innanen and
Lira, 2008).
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The impact of accommodating the source radiation pattern on the
inverse scattering series free-surface multiple elimination algorithm on

data with interfering or proximal primaries and multiples

Jinlong Yang and Arthur B. Weglein

Abstract

The inverse scattering series (ISS) free-surface multiple elimination algorithm has certain
prerequisites: (1) removal the reference wavefield, (2) estimation and removal of the source
wavelet and radiation pattern, and (3) removal of source and receiver ghosts. For the first pre-
requisite, Weglein and Secrest (1990) describe a method to separate the reference wavefield
from the scattered wavefield (reflection data) without requiring subsurface information. In this
report, the impacts of prerequisites (2) and (3) on the ISS free-surface multiple elimination
algorithm (Carvalho, 1992; Weglein et al., 1997) are discussed and exemplified, and then the
algorithm is modified and extended to accommodate for a source radiation pattern. Accom-
modation for the radiation pattern can provide added value to the algorithm, compared with
previous implementations that assumed an isotropic point source for predicting the amplitude
and phase of free-surface multiples. It is noteworthy that these three prerequisites listed above
can all be satisfied by Green’s theorem methods. Green’s theorem methods for separating the
reference wavefield and the scattered wavefield do not require subsurface information and are
consistent with the ISS free-surface multiple elimination algorithm. Our new, extended ISS
free-surface multiple elimination algorithm, which accommodates for the source radiation pat-
tern, is tested here on a 1D acoustic model with proximal and interfering primaries and multi-
ples, and the results indicate that when the source has a radiation pattern, the new algorithm can
predict free-surface multiples more accurately than methods without that accommodation. This
increased effectiveness in prediction is important for removing free-surface multiples without
damaging primaries, when the free-surface multiples are proximal to and interfering with pri-
maries (or other multiples). It is important in such cases to increase our predictive effectiveness
because other prediction methods, such as surface-related multiple elimination (SRME) algo-
rithm, have difficulties and issues with prediction accuracy, and those issues affect efforts to
remove multiples through adaptive subtraction.

1 Introduction

In seismic exploration, preprocessing of the seismic data, including removal of reference waves, es-
timation of wavelet, and removal of ghosts, is important in order to achieve subsequent processing
goals and objectives. The reference wave should be removed because it does not contain subsur-
face information, and obtaining subsurface information is our interest and objective. To identify
subsurface properties from seismic data, we also need to identify and remove the seismic source’s
effect from the seismic data because both the source and the properties of the earth contribute to
the recorded seismic data (e.g., Weglein and Secrest, 1990; Amundsen, 1993; Osen et al., 1998).
Source and receiver deghosting will remove the ghost notches and enhance the low-frequency con-
tent of the seismic data (e.g., Zhang and Weglein, 2005, 2006; Mayhan et al., 2011, 2012; Mayhan
and Weglein, 2013), and those steps are also the prerequisites of all ISS task-specific subseries (We-
glein et al., 2003). All three of these preprocessing steps can be achieved by using Green’s theorem
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methods without requiring subsurface information. Green’s theorem methods were pioneered by
J. Zhang (Weglein et al., 2002; Zhang and Weglein, 2005, 2006; Zhang, 2007) and developed by
J. Mayhan (Mayhan et al., 2011, 2012; Mayhan and Weglein, 2013). Wu and Weglein (2014) ex-
tended the Green’s theorem method for the reference wave and scattered wave separation from the
off-shore acoustic plays to the on-shore elastic plays.

In seismic data preprocessing, multiple removal is a classic and long-standing problem. Vari-
ous methods have been developed to either attenuate or eliminate free-surface multiples, and each
method has different assumptions, advantages, and limitations (see, e.g., Carvalho, 1992; Verschuur
et al., 1992; Weglein et al., 1997, 2003; Berkhout and Verschuur, 1999; Dragoset et al., 2008).
Among these methods, the ISS free-surface multiple elimination algorithm (Carvalho, 1992; We-
glein et al., 1997, 2003) is fully data-driven and does not require any subsurface information, which
is a big advantage, especially under conditions of complex geology. The ISS free-surface multiple
elimination algorithm (Carvalho, 1992; Weglein et al., 1997, 2003) can, in principle, predict the
exact amplitude and phase of the free-surface multiples at all offsets and then can remove them
through a simple subtraction. In practice, however, the algorithm may require an adaptive assist.
However, SRME algorithm can only provide approximate predictions because it ignores the obliq-
uity factor and retains the source ghosts. Hence, it requires an adaptive step not only in principle
but also in practice. Adaptive subtraction (energy minimization, for example) can be a reasonable
choice at times; in other situations, however, it can have issues with proximal and interfering events.
It is based on the energy minimization criterion, which assumes tha the energy of the data will be
minimized after the multiples are removed, but in some cases, after multiple removal, the energy
may be increasing rather than decreasing. Therefore, adaptive subtraction can damage primaries or
fail to remove the multiples.

For data generated by a general source with a radiation pattern, the ISS free-surface multiple
elimination algorithm needs to be modified and extended because it assumes an isotropic point
source, where the source has no variation of amplitude or phase with take-off angle. In towed
marine acquisition, a source array is commonly used to increase the power of the source, broaden
the bandwidth, and cancel the random noise. Such a source array exhibits directivity in the take-
off angle (Loveridge et al., 1984), that directivity is an issue for multiple removal and attenuation
and for AVO analysis. Thus, in seismic processing, it is essential that we characterize the source
array’s effect on any seismic processing methods. Therefore, to accommodate a general source
with a radiation pattern, we have modified and extended the ISS free-surface multiple elimination
algorithm to improve its accuracy in predicting multiples. That accommodation can enhance the
fidelity of amplitude and phase prediction of free-surface multiples at all offsets when the source
has a radiation pattern. Moreover, it is a necessary preparation for internal multiple removal, because
the better we succeed at removing the free-surface multiples, the better we will succeed at achieving
the subsequent processing steps, such as internal multiple removal, imaging, and inversion.

2 Theory

The ISS free-surface multiple elimination algorithm in the 2D case starts with the input dataD′1(kg, ks, ω),
which are source and receiver deghosted. For an isotropic point source, the algorithm is proposed
by (Carvalho, 1992; Weglein et al., 1997, 2003):

D′n(kg, ks, ω) =
1

iπA(ω)

∫
dkD′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω), (1)
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where kg, ks and ω represent the Fourier conjugates of receiver, source, and time, respectively.
The parameters εg and εs are the receivers’ and sources’ depth below the free surface, respectively.
The term q is the obliquity factor q = sgn(ω)

√
ω2/c2

0 − k2. c0 is the reference velocity. A(ω)
is the source signature, which is a function of time or ω in different domains. The free-surface
multiples are predicted order-by-order and then added together to give the deghosted and free-
surface demultipled data D′(kg, ks, ω) =

∑∞
n=1D

′
n(kg, ks, ω).

For data generated by a general source with a radiation pattern, however, the current ISS free-
surface multiple elimination algorithm (equation 1) can only predict multiples approximately. To
accommodate the source’s effect, the ISS free-surface multiple elimination algorithm is modified
and extended from an isotropic point source to a general source ρ with a radiation pattern (Yang
et al., 2013; Yang, 2014)

D′n(kg, ks, ω) =
1
iπ

∫
dk

ρ(k, q, ω)
D′1(kg, k, ω)qeiq(εg+εs)D′n−1(k, ks, ω), (2)

where ρ(k, q, ω) is the projection of the source signature in the f -k domain and k2+q2 = ω2/c2
0 The

projection of the source signature ρ(k, q, ω) can be achieved from the reference wavefield, which is
separated from the total wavefield by using Green’s theorem methods (Weglein and Secrest, 1990;
Mayhan and Weglein, 2013; Tang et al., 2013).

In this report, we assume that the source array is invariant from one shot to the next. In other
words, the geometry or the distribution of the source array is the same for each shot. The direct
reference wavefield P d0 for a 2D case can be expressed as an integral of the direct reference Green’s
function Gd0 over all air-guns in an array,

P d0 (x, z, xs, zs, ω) =
∫∫

dx′dz′ρ(x′, z′, ω)Gd0(x, z, x′ + xs, z
′ + zs, ω), (3)

where (x, z) and (xs, zs) are the prediction point and the source point, respectively. Here, (x′, z′) is
the distribution of the source with respect to the source locator (xs, zs). Using the bilinear form of
Green’s function and Fourier transforming over x, we obtain the relationship between ρ and P d0 as

P d0 (k, z, xs, zs, ω) = ρ(k, q, ω)
eiq|z−zs|

2iq
e−ikxs . (4)

Since k2 + q2 = ω2/c2
0, q is not a free variable, and hence we can not obtain ρ(x, z, ω) in the space-

frequency domain by taking an inverse Fourier transform on ρ(k, q, ω). However, the projection of
the source signature ρ(k, q, ω) can always be achieved directly from the direct reference wavefield
P d0 in the f -k domain, where either the variable k or q represents the amplitude variations of the
source signature with angles. Ikelle et al. (1997) also proposed a similar quantity, A(k, ω), the
inverse source wavelet, and solved for it indirectly using the energy minimization criterion. We
instead apply Green’s theorem wave separation methods to find the generalized source signature
directly.

By substituting the projection of the source signature ρ(k, q, ω) into the ISS free-surface mul-
tiple removal subseries, we can modify and extend the ISS free-surface multiple elimination al-
gorithm (Yang, 2014). The extended algorithm accommodates a general source with a radiation
pattern and can provide added value by improving the fidelity of amplitude and phase predictions
of the free-surface multiples at all offsets. The extended ISS free-surface multiple elimination al-
gorithm is fully multidimensional and does not require any subsurface information. Therefore, it is
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consistent with Green’s theorem methods that provide all the data requirements. The extended free-
surface multiple elimination algorithm (equation 2) is also consistent with the previous free-surface
multiple elimination algorithm (equation 1) in which the general source (e.g., source array) reduces
to an isotropic point source. Finally, this modification easily can be extended to the 3D case.

3 Numerical tests

In this section, the effects of not satisfying the prerequisites of the ISS free-surface multiple elim-
ination algorithm are exemplified, tested, and compared with the effects of satisfying them. For
each test, we will show the impact of each prerequisite on the ISS free-surface multiple elimination
algorithm separately and then will compare its result with the response when the same prerequisite
has been satisfied. We will show the impact of ghosts, of the source wavelet, and of the source
radiation pattern on free-surface multiple removal. For exemplifying the impact of ghosts and of the
source wavelet on free-surface multiple removal, a point source is applied to generate the data. For
exemplifying the impact of the source radiation pattern on free-surface multiple removal, a source
array is applied to generate the data.

The tests are organized as follows: First, we test the impact of ghosts and the source wavelet
on free-surface multiple removal. Then when both prerequisites – deghosting and source wavelet
deconvolution – have been satisfied, the result of free-surface multiple removal is also shown. Sec-
ond, the impact of the source radiation pattern on free-surface multiple removal is presented. The
results of free-surface multiple removal by using the current algorithm (equation 1) are presented
and are compared with the results from using the extended algorithm (equation 2), which accom-
modates for the radiation pattern. Finally, we will show free-surface multiple removal on the data
with destructively interfering primaries and multiples.

3.1 The impact of ghosts and source wavelet on free-surface multiple removal

The numerical tests for the impact of ghosts and of the source wavlet on free-surface multiple
removal are based on a 1D acoustic model with varying velocity and constant density, as shown in
Figure 1. The model has one reflector, at 300m. The depths of the source and receiver are 7m and

Figure 1: One-dimensional acoustic constant-density medium.
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9m, respectively. Synthetic data are generated by using the Cagniard-de Hoop method (de Hoop and
van der Hijden, 1983; Aki and Richards, 2002), which can accurately produce any specific event
that we are interested in.

For exemplifying the impact of ghosts and of the source wavelet on free-surface multiple re-
moval, a point source is applied to generate the data. We apply the current ISS free-surface multiple
elimination algorithm (equation 1) to predict and remove the free-surface multiples from the point-
source data. Figure 2 illustrates the impact of ghosts and the source wavelet on free-surface multiple
removal. Figure 2a shows the input data with ghosts. Inputting it into the ISS free-surface multiple
elimination algorithm gives the free-surface multiple prediction shown in Figure 2b. After sub-
traction of the prediction from the input data, Figure 2c shows the results of free-surface multiple
removal by means of a simple subtraction. From this example, we can see that if the input data are
not deghosted, the ISS free-surface multiple elimination algorithm can predict the correct phase but
only the approximate amplitude of the free-surface multiples. After ghosts have been removed,
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Figure 2: Input data with ghosts (a) and without ghosts (d); Free-surface multiple prediction us-
ing the ISS free-surface multiple elimination algorithm with source wavelet deconvolution (b)
and without source wavelet deconvolution (e); (c)&(f) Results after free-surface multiple removal
through a simple subtraction.

the resulting input data are shown in Figure 2d. Figure 2e shows the predicted free-surface multi-
ples obtained by using the ISS free-surface multiple elimination algorithm without source wavelet
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deconvolution. Figure 2f illustrates the results of free-surface multiple removal, again by a simple
subtraction. Without incorporating the source wavelet deconvolution, the ISS free-surface multiple
elimination algorithm can predict the correct phase but only the approximate amplitude of the free-
surface multiples. Therefore, without removing the ghosts and incorporating the source wavelet
deconvolution, the ISS free-surface multiple elimination algorithm can only predict approximate
free-surface multiples and can not remove them through a simple subtraction.

If all the prerequisites are satisfied – i.e., if the ghosts have been removed and the source wavelet
has been deconvolved – we can see in Figure 3 shows the results of following free-surface multi-
ple removal. Figure 3a shows the input data and Figure 3b is the free-surface multiple prediction.
After subtracting from the input data through a simple subtraction, Figure 3c shows the result of
following free-surface multiple removal. From this example, we can see that if all the prerequisites
are satisfied, the free-surface multiples are predicted exactly by using the ISS free-surface multi-
ple elimination algorithm and are removed through a simple subtraction. Most importantly, the
primaries are not touched, as is shown in Figure 3c. Therefore, the ISS free-surface multiple elim-
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Figure 3: Free-surface multiple removal with all prerequisites (source wavelet deconvolution and
ghost removal) satisfied. (a) Input data; (b) free-surface multiple prediction, and (c) the result after
removal of the free-surface multiple.

ination algorithm has the ability to predict accurately the phase and the amplitude of multiples if its
prerequisites (incorporation of the source wavelet deconvolution, and deghosting) are satisfied.

3.2 The impact of the source radiation pattern on free-surface multiple removal
when there are proximal primaries and multiples

In this test, we move the water bottom from 300m to 90m (Figure 4); hence, the primary now is
proximal to and overlapping the free-surface multiples. To evaluate the significance of the source
radiation pattern, a source array (Figure 5) with nine air-guns is applied to generate the data. Each
air-gun has a different amplitude, which is indicated by the numbers in Figure 5. For simplicity, in
the source-array data, only the primary and the first-order free-surface multiple are generated by the
Cagniard-de Hoop method. The primary and multiple are overlapping and interfering destructively;
hence, only the ISS method may be able to remove the free-surface multiples.

Figure 6a represents the source-array data for this source array, and Figure 6d is its correspond-
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Figure 4: One-dimensional acoustic constant-density medium.

Figure 5: Source array with nine air-guns.

ing wiggle plot for a small window (for times from 1.0s to 1.4s and traces from 1330 to 1420); we
can see that the primary and the first-order free-surface multiple overlap when the offset exceeds ap-
proximately 1000m. Furthermore, it is clear that they are destructively overlapping. Therefore, the
adaptive subtraction method can be invalid or fail for this kind of situation, because the method is
based on the energy minimization criterion, which assumes that the energy of the data will be mini-
mized after the multiples are removed. However, in this case, the energy increases after removal of
the multiples.

Figures 6b shows the results following free-surface multiple removal by using the current ISS
free-surface multiple elimination algorithm (equation 1) and 6c shows the results from using the
extended algorithm (equation 2). It can be seen that for the source-array data with a radiation pat-
tern, the current ISS free-surface multiple elimination algorithm can effectively remove free-surface
multiples, but some residual multiples remain due to the effect of the source radiation pattern. How-
ever, the new, extended ISS free-surface multiple elimination algorithm can remove the free-surface
multiples completely through a simple subtraction.

Comparing Figures 6f and 6e, we can see in Figure 6e that the primary is still affected by
the residual multiple, whereas in Figure 6f, the primary remains untouched as the original primary.
Figure 7 illustrates the details of comparing one trace at 1800m offset. After removal of free-surface
multiples by using the new algorithm, the primary is the same as the original one in the input data.
With the current algorithm, the primary (Figure 6e) is a little weaker than the original primary, and
this amplitude error will seriously affect AVO analysis.

For the source-array data, the current ISS free-surface multiple elimination algorithm can predict
and remove the free-surface multiples well with some small residues, while the new, extended ISS
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Figure 6: The impact of the source radiation pattern on free-surface multiple removal. (a) The
source-array data; (b) the data following free-surface multiple removal using the current ISS free-
surface multiple elimination algorithm; note that there are some residual multiples; (c) the data
following free-surface multiple removal using the extended ISS free-surface multiple elimination
algorithm; note that all the multiples have been completely eliminated. (d), (e), and (f) are their
corresponding wiggle plots for the traces from 1330 to 1420 (offset from 1590m to 1860m).
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Figure 7: Comparison of one trace at 1800m offset. Red line: the original primary in the input data;
blue line: the data after multiple removal by using the current free-surface multiple elimination
algorithm; dashed green line: the data after multiple removal by using the new, extended free-
surface multiple elimination algorithm.

free-surface multiple elimination algorithm can accurately predict and completely eliminate the
free-surface multiples without damaging the primaries.

3.3 Free-surface multiple removal on data with destructively interfering primaries
and multiples

This test is based on a 1D two-reflector acoustic model with constant velocity and varying density,
as shown in Figure 8. The parameters are designed so that the second primary is destructively
interfering with the first-order free-surface multiple due to the first reflector. The data are generated
by the reflectivity method. Here we do not generate the ghosts, in other words, we do not need
to remove ghosts from the data. In practice, we need to remove the ghosts first to prepare for
free-surface multiple removal.

First, the point-source data are generated by an isotropic point source to test the current free-
surface multiple elimination algorithm. To see the destructive interference, we generate the pri-
maries and free-surface multiples separately. Figure 9 shows the seismic events. P1 and P2 are
the first two primaries. F1, F2 and F3 are the first-order, second-order, and third-order free-surface
multiples. The events in the same color have the same arrival time, hence, they are interfering in the
seismic data.

Figure 10 shows one shot gather. Figure 10a represents the two generated primaries and Figure
10b shows the free-surface multiples. Adding them together, we obtain the total point-source data,
as shown in Figure 10c. As we can see, the second primary and the first-order free-surface multiple
are destructively interfering and are canceling. Therefore, the adaptive subtraction method can be
invalid or fail for this kind of situation, because the method is based on the energy minimization cri-
terion, which assumes that the energy of the data will be minimized after the multiples are removed.
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Figure 8: One-dimensional two-reflector acoustic model with constant velocity and varying density.

Figure 9: Seismic events. P1 and P2 are the first two primaries. F1, F2 and F3 are the first-order,
second-order and third-order free-surface multiples. The events with the same color have the same
arrival time.
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Figure 10: (a) Primary, (b) free-surface multiple, and (c) point-source data
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However, in this case, the energy increases after removal of the first free-surface multiple.
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Figure 11: (a) Point-source data, (b) free-surface multiple prediction, and (c) after free-surface
multiple removal

Inputting the point-source data (Figure 11a) into the current free-surface multiple elimination
algorithm (equation 1), Figure 11b shows the predicted first-order free-surface multiples. After
subtracting the prediction from the total data, Figure 11c presents the multiple removal result. It
can be seen that all of the first-order free-surface multiples are removed and all of the higher-order
free-surface multiples are altered. The second primary is recovered, since it is interfering only with
the first-order free-surface multiple.

To check whether the second primary is fully recovered, we can randomly pick one trace (for
example, at 1800m offset) from Figures 10a, 11b and 11c. Comparing the original primary (red
line) and the multiple removal result (green dash line) in Figure 12, we can see that after free-surface
multiple removal, the second primary is fully recovered. In this example, the current free-surface
multiple elimination algorithm has the ability to correctly predict both amplitude and time of the
free-surface multiples and remove them completely through a simple subtraction without touching
the primaries. Most importantly, it recovers the primary that is destructively interfering with a
free-surface multiple.

To evaluate the significance of the source radiation pattern for the interfering events example,
we apply the same source array as in Figure 5 to generate the data. The primaries and free-surface
multiples are generated separately as in the point-source data example. Figure 13a represents the
two primaries and Figure 13b is the free-surface multiples. Summing them together, we get the
source-array data, as shown in Figure 13c. The second primary is destructively interfering with the
first-order free-surface multiple.

We input the source-array data (Figures 14a) into the current and extended free-surface multiple
elimination algorithms (equation 2). Figures 15a and 15b are the free-surface multiples, which are
predicted by using the current and the extended ISS free-surface multiple elimination algorithms,
respectively. Figure 15c is corresponding difference between these two predictions. Figures 14b
and 14c are the results following free-surface multiple removal by using the current (equation 1)
and extended (equation 2) ISS free-surface multiple elimination algorithms, respectively. It can
be seen that both algorithms effectively remove the first-order free-surface multiples and alter the
higher-order free-surface multiples. The second primary is also recovered.
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Figure 12: Comparison of one trace at 1800m offset. Red line: the two original primaries; blue line:
the total data; dashed green line: after multiple removal.
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Figure 13: (a) Primary, (b) free surface multiple, and (c) source-array data
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Figure 14: The impact of the source radiation pattern on free-surface multiple removal. (a) The
source-array data; (b) the data following free-surface multiple removal using the current ISS free-
surface multiple elimination algorithm; note that there are some residual multiples; (c) the data
following free-surface multiple removal using the extended ISS free-surface multiple elimination
algorithm; note that all the multiples have been completely eliminated.
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Figure 15: The free-surface multiples that are predicted by the (a) current and (b) the extended ISS
free-surface multiple elimination algorithms. (c) The difference between two predictions.
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How do we know the second primary is fully recovered or not? We randomly pick one trace
(for instance, at 1800m offset) from each figure in Figure 14. Figure 16 illustrates the details of
comparing one trace at 1800m offset. After removal of free-surface multiples by using the new
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Figure 16: Comparison of one trace at 1800m offset. Red line: the two original primaries; blue line:
the data after multiple removal by using the current free-surface multiple elimination algorithm;
dashed green line: the data after multiple removal using the new, extended free-surface multiple
elimination algorithm.

algorithm, the second primary (dashed green line) is recovered as the original primary (red line).
With the current algorithm, the second primary (blue line) is weaker than the original primary, and
that amplitude error will seriously affect AVO analysis. The numerical tests for the synthetic data
with destructively interfering events have demonstrated the effectiveness and ability of the extended
ISS free-surface multiple elimination algorithm.

4 Conclusions

We discussed and examined the impact of satisfying versus not satisfying certain prerequisites to
the current ISS free-surface multiple elimination algorithm (i.e., removal of ghosts, and estimation
and removal of the source wavelet and of the radiation pattern) on the results produced by that
algorithm. We then modified and extended the ISS free-surface multiple elimination algorithm
to accommodate a general source with a radiation pattern. For that situation, the new, extended
algorithm can provide added value, compared with previous methods, by improving the fidelity of
amplitude and phase prediction of the free-surface multiples at all offsets. It is multidimensional
and does not require any subsurface information. We presented numerical tests showing that if the
prerequisites have been satisfied, the new, extended ISS free-surface multiple elimination algorithm
can, in principle, predict the free-surface multiples more accurately and then can remove them
more effectively. When the free-surface multiples are proximal to or destructively interfering with
other events, this accommodation and extension is particularly important, since we can not rely on
adaptive subtraction to fix the errors in amplitude and phase of our prediction.
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The impact of accommodating the source radiation pattern on the inverse scattering series free-
surface multiple elimination algorithm
Jinlong Yang∗ and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The inverse scattering series (ISS) free-surface multiple elim-
ination algorithm has certain prerequisites: (1) removing the
reference wavefield, (2) estimation of source wavelet and radi-
ation pattern, and (3) source and receiver deghosting. Weglein
and Secrest (1990) describe a method to separate the refer-
ence wavefield from the scattered wavefield (reflection data)
without subsurface information. In this abstract, the impact
of prerequisites (2) and (3) on the ISS free-surface multiple
elimination algorithm (Carvalho, 1992; Weglein et al., 1997)
is discussed and the algorithm is modified and extended to ac-
commodate the source radiation pattern. That radiation pattern
accommodation can provide added value compared to previous
methods that assumed an isotropic point source for predict-
ing amplitude and phase of free-surface multiples. All these
prerequisites can be provided by Green’s theorem methods.
Green’s theorem methods for wave separation do not require
subsurface information. They are consistent with the ISS free-
surface multiple elimination algorithm. The extended ISS free-
surface multiple elimination algorithm that accommodates the
source radiation pattern is tested on a 1D acoustic model, and
the results indicate that the new and extended ISS free-surface
multiple elimination algorithm can predict more accurate re-
sults in comparison with methods without that accommodation
when the source has a radiation pattern. This increased ef-
fectiveness in prediction is essential for removing free-surface
multiples that are proximal or interfering with primaries (or
other multiples).

INTRODUCTION

In seismic exploration, preprocessing of seismic data, includ-
ing the removal of reference waves, wavelet estimation, and
removal of ghosts, are very important. The reference wave
should be removed because it does not experience reflection
from the earth, which is our interest. Both the active source
and the properties of the earth contribute to the amplitude and
phase of recorded seismic events. To identify subsurface prop-
erties from seismic data, we need to identify and remove the
source’s effect from the seismic data (Weglein and Secrest,
1990). Source and receiver deghosting will remove the ghost
notches and enhance the low-frequency content of the seismic
data (Mayhan et al., 2011, 2012; Mayhan and Weglein, 2013).
These are the prerequisites of the ISS free-surface multiple
elimination algorithm (Weglein et al., 2003). All three of these
processing steps can be achieved by using Green’s theorem
methods without requiring subsurface information. Green’s
theorem methods have been pioneered by J. Zhang (Weglein
et al., 2002; Zhang and Weglein, 2005, 2006; Zhang, 2007)
and developed by J. Mayhan (Mayhan et al., 2011, 2012; May-

han and Weglein, 2013). Wu and Weglein (2014) extended
Green’s theorem reference wave prediction algorithm from the
off-shore acoustic to the on-shore elastic wavefield separation.

In addition, multiple removal is a classic long-standing prob-
lem. Various methods (e.g., Carvalho, 1992; Verschuur et al.,
1992; Weglein et al., 1997, 2003; Berkhout and Verschuur,
1999; Dragoset et al., 2008) have been developed to either at-
tenuate or eliminate free-surface multiples, and each method
has different assumptions, advantages, and limitations. Among
these methods, the ISS free-surface multiple elimination al-
gorithm (Carvalho, 1992; Weglein et al., 1997, 2003) is fully
data-driven and does not need any subsurface information, which
is a big advantage, especially under conditions of complex ge-
ology. Given its prerequisites, the ISS free-surface multiple
elimination algorithm (Carvalho, 1992; Weglein et al., 1997,
2003) can predict the exact amplitude and phase of all free-
surface multiples at all offsets and remove them through a
simple subtraction without adaptively subtraction using cer-
tain criteria (energy minimization, for example). Methods, like
SRME, do not provide this ability and they rely on an adaptive
subtraction to fill that gap. The adaptive subtraction can be
reasonable at times, but at other times, it can have issues with
proximal and interfering events, e.g., damaging a primary and
failing to remove the multiples.

However, for data generated by a general source with a ra-
diation pattern, the ISS free-surface multiple elimination al-
gorithm assumes an isotropic point source, where the source
has no variation of amplitude or phase with take-off angle. In
towed marine acquisition, a source array is commonly used to
increase the power of the source, broaden the bandwidth, and
cancel the random noise. The source array exhibits directivity
in take-off angle (Loveridge et al., 1984). That directivity is
an issue for multiple removal and attenuation and AVO analy-
sis. In seismic processing, it is essential that we characterize
the source array’s effect on any seismic processing methods.
Therefore, to improve the accuracy of the predicted multiples,
the ISS free-surface multiple elimination algorithm is modified
and extended by accommodating a general source with a radi-
ation pattern. That accommodation can enhance the fidelity of
amplitude and phase prediction of free-surface multiples at all
offsets when the source has a radiation pattern.

THEORY

The ISS free-surface multiple elimination algorithm in 2D case
starts with the input data D′1(kg,ks,ω), that is source and re-
ceiver deghosted. For an isotropic point source, it is proposed
by (Carvalho, 1992; Weglein et al., 1997, 2003):

D′n(kg,ks,ω)

= 1
iπA(ω)

∫
dkD′1(kg,k,ω)qeiq(εg+εs)D′n−1(k,ks,ω), (1)
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where kg, ks and ω represent the Fourier conjugates of receiver,
source, and time, respectively. The parameters εg and εs are
the receivers’ and sources’ depth below the free surface, re-

spectively. q is the obliquity factor q = sgn(ω)
√

ω2/c2
0− k2,

and c0 is the reference velocity. A(ω) is the source signature,
which is a function of time or ω in different domains. The free-
surface multiples are predicted order-by-order and then added
together give the deghosted and free-surface demultipled data
D′(kg,ks,ω) =

∑∞
n=1 D′n(kg,ks,ω).

For the data generated by a general source with a radiation
pattern, the ISS free-surface multiple elimination algorithm
can only predict multiples approximately. To accommodate
the source’s effect, the ISS free-surface multiple elimination
algorithm is modified and extended from an isotropic point
source to a general source ρ with a radiation pattern (Yang
et al., 2013; Yang, 2014)

D′n(kg,ks,ω)

= 1
iπ
∫ dk

ρ(k,q,ω) D′1(kg,k,ω)qeiq(εg+εs)D′n−1(k,ks,ω), (2)

where ρ(k,q,ω) is the projection of source signature in the f -k
domain and k2 +q2 = ω2/c2

0 The projection of the source sig-
nature ρ(k,q,ω) can be achieved from the reference wavefield
that is separated from the total wavefield by using Green’s the-
orem methods (Weglein and Secrest, 1990; Mayhan and We-
glein, 2013; Tang et al., 2013).

In this paper, we assume that the source array is invariant from
one shot to the next. In other words, the geometry or the dis-
tribution of the source array is the same for each shot. The
direct reference wavefield Pd

0 for a 2D case can be expressed
as an integral of the direct reference Green’s function Gd

0 over
all air-guns in an array,

Pd
0 (x,z,xs,zs,ω)

=
∫∫

dx′dz′ρ(x′,z′,ω)Gd
0(x,z,x′+ xs,z′+ zs,ω), (3)

where (x,z) and (xs,zs) are the prediction point and source
point, respectively. (x′,z′) is the distribution of the source with
respect to the source locator (xs,zs). Using the bilinear form
of Green’s function and Fourier transforming over x, we obtain
the relationship between ρ and Pd

0 as

Pd
0 (k,z,xs,zs,ω) = ρ(k,q,ω)

eiq|z−zs|

2iq
e−ikxs . (4)

Since k2 +q2 = ω2/c2
0, q is not a free variable, hence, we can

not obtain ρ(x,z,ω) in space-frequency domain by taking an
inverse Fourier transform on ρ(k,q,ω). However, the projec-
tion of the source signature ρ(k,q,ω) can always be achieved
directly from the direct reference wavefield Pd

0 in the f -k do-
main, where the variable k or q represent the amplitude varia-
tions of the source signature with angles. Ikelle et al. (1997)
also proposed a similar quantity A(k,ω), the inverse source
wavelet, and solved it indirectly using the energy minimiza-
tion criterion, while we apply Green’s theorem wave separa-
tion methods to find the generalized source signature directly.

Substituting the projection of the source signature ρ(k,q,ω)
into the inverse scattering free-surface multiple removal sub-
series, the ISS free-surface multiple elimination algorithm can

be modified and extended (Yang, 2014). The extended algo-
rithm accommodates a general source with a radiation pattern
and can provide added value for the fidelity of amplitude and
phase prediction of the free-surface multiples at all offsets.
The extended ISS free-surface multiple elimination algorithm
is fully multidimensional and does not require any subsurface
information. Therefore, it is consistent with Green’s theorem
methods that provide all the data requirements. The extended
free-surface multiple elimination algorithm (equation 2) is also
consistent with the previous free-surface multiple elimination
algorithm (equation 1) when the general source (e.g., source
array) reduces to an isotropic point source. In addition, this
modification can be easily extended into 3D case.

NUMERICAL TESTS

In this section, the effects of satisfying and not satisfying the
prerequisites of the ISS free-surface multiple elimination al-
gorithm are exemplified and tested. In each test, we will show
the impact of each prerequisite on the ISS free-surface mul-
tiple elimination algorithm separately and compare its result
with that after accommodating this prerequisite.

We will show the impact of ghosts, source wavelet, and radi-
ation pattern on free-surface multiple removal. The numerical
tests are based on a 1D acoustic model with varying velocity
and constant density, as shown in Figure 1. The model has

Figure 1: One-dimensional acoustic constant-density medium.

one reflector at 300m. The depths of the source and receiver
are 7m and 9m, respectively. The synthetic data are generated
by using the Cagniard-de Hoop method (de Hoop and van der
Hijden, 1983; Aki and Richards, 2002), which can accurately
produce any specific event that we are interested in. For exem-
plifying the impact of ghosts and source wavelet on the free-
surface multiple removal, a point source is applied to gener-
ate the data. For exemplifying the impact of source radiation
pattern on the free-surface multiple removal, a source array is
applied to generate the data.

The tests are organized as follows: First, we test the impact
of ghosts and source wavelet on the free-surface multiple re-
moval. If both prerequisites are satisfied, the result of the free-
surface multiple removal is also shown. Second, the impact of
the source radiation pattern on free-surface multiple removal
is presented. The results of the free-surface multiple removal
by using the previous algorithm (equation 1) and the extended
algorithm (equation 2) are compared.

The impact of ghosts and source wavelet on free-surface
multiple removal
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For exemplifying the impact of ghosts and source wavelet, a
point source is applied to generated the data. We apply the
ISS free-surface multiple elimination algorithm (equation 1) to
predict and remove the free-surface multiples from the point-
source data. Figure 2 shows the impact of ghosts and source
wavelet on the free-surface multiple removal. Figure 2a is the
input data with ghosts. Inputting it into the ISS free-surface
multiple elimination algorithm gives the free-surface multiple
prediction as shown in Figure 2b. After subtracting the pre-
diction from the input data, Figure 2c shows the results of af-
ter free-surface multiple removal through a simple subtraction.
From this example, we can see that if the input data are not
deghosted, the ISS free-surface multiple elimination algorithm
can only predict the correct phase but approximate amplitude
of the free-surface multiples. After removing the ghosts, the
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Figure 2: (a)&(d) Input data with and without ghosts;
(b)&(e) Free-surface multiple prediction using the ISS free-
surface multiple elimination algorithm with and without
source wavelet deconvolution; (c)&(f) After free-surface mul-
tiple removal through a simple subtraction.

input data is shown in Figure 2d. Figure 2e shows the pre-
dicted free-surface multiples using the ISS free-surface multi-
ple elimination algorithm without source wavelet deconvolu-
tion. Figure 2f illustrates the results of free-surface multiple
removal by a simple subtraction. Without incorporating the
source wavelet deconvolution, the ISS free-surface multiple
elimination algorithm can only predict the correct phase but
approximate amplitude of the free-surface multiples. There-
fore, without removing the ghosts and incorporating the source
wavelet deconvolution, the ISS free-surface multiple elimina-
tion algorithm can only predict approximate free-surface mul-
tiples and can not remove through a simple subtraction.

If all the prerequisites are satisfied, i.e., the ghosts have been
removed and the source wavelet has been deconvolved, Fig-
ure 3 shows the results of after free-surface multiple removal.
Figure 3a is the input data and Figure 3b is the free-surface
multiple prediction. After subtracting from the input data through

a simple subtraction, Figure 3c shows the result of after free-
surface multiple removal. From this example, we can see that
if all the prerequisites are satisfied, the free-surface multiples
are predicted exactly by using the ISS free-surface multiple
elimination algorithm and removed through a simple subtrac-
tion. Most importantly, all primaries are not touched, as shown
in Figure 3c. Therefore, the ISS free-surface multiple elimina-
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Figure 3: Free surface multiple removal with all prerequisites
are satisfied

tion algorithm has the ability to predict accurately the phase
and amplitude of multiples if its prerequisites (incorporating
the source wavelet deconvolution and deghosting) are satisfied.

The impact of the source radiation pattern on free-surface
multiple removal

To evaluate the significance of the source radiation pattern,
a source array (Figure 4) with nine air-guns are applied to
generated the data. Here, we assume that the source array

Figure 4: Source array with nine air-guns.

only varies laterally with identical source signatures, but this
assumption is not necessary in the ISS free-surface multiple
elimination algorithm. In the source-array data, only the pri-
mary and free-surface multiples are generated by the Cagniard-
de Hoop method.

Figure 5a is the source-array data with nine point sources. Fig-
ures 5b and 5c are the results of after the free-surface multiple
removal by using the current (equation 1) and extended (equa-
tion 2) ISS free-surface multiple elimination algorithms. It can
be seen that for the source-array data with radiation pattern, the
current ISS free-surface multiple elimination algorithm can ef-
fectively remove the free-surface multiples, but there are still
some residual multiples due to the effect of the source radi-
ation pattern. While the extended ISS free-surface multiple
elimination algorithm can remove the free-surface multiples
completely through a simple subtraction.

For details, we pick four traces from the source-array data and
compare the results after free-surface multiple removal, by us-
ing both the current and extended ISS free-surface multiple
elimination algorithms. Here, only the results of after first-
order free-surface multiple removal are compared with the in-
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Figure 5: The impact of source radiation pattern on free-
surface multiple removal. (a) the source-array data; (b) follow-
ing free-surface multiple removal using the current ISS free-
surface multiple elimination algorithm, there are some residual
multiples; (c) following free-surface multiple removal using
the extended ISS free-surface multiple elimination algorithm,
all the multiples are completely eliminated.

put data. At zero offset, both the current and extended ISS free-
surface multiple elimination algorithms can predict the accu-
rate amplitude and phase of the free-surface multiples and re-
move them completely through a simple subtraction, as shown
in Figure 6a. At large offsets, the current ISS free-surface mul-
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Figure 6: Comparisons between the input data and the results
of after free-surface multiple removal at four different offsets
(a) 0m, (b) 750m, (c) 1500m, and (d) 2250m. Red line: The
input data; Green dash line: after the free-surface multiple re-
moval by the current ISS free-surface multiple elimination al-
gorithm; Blue line: after the free-surface multiple removal by
the extended ISS free-surface multiple elimination algorithm.

tiple elimination algorithm can still predict the correct phase of
the free-surface multiples, while the amplitude of the predicted
free-surface multiples has some errors. The green dash line in
Figures 6b, 6c, and 6d shows the residual free-surface multi-
ples after the free-surface multiple removal using the current

ISS free-surface multiple elimination algorithm. With the in-
creasing offset, the residual multiples are larger. The extended
ISS free-surface multiple elimination algorithm can predict the
accurate amplitude and phase of the free-surface multiples at
both zero and large offsets. The blue line in Figure 6 shows the
results after the free-surface multiple removal. The multiples
are totally removed at any offsets. This is in contrast to SRME
that has amplitude and phase errors at all offsets, and relies on
adaptive subtraction to fix the errors in prediction.

For the source-array data, the current ISS free-surface mul-
tiple elimination algorithm can well predict and remove the
free-surface multiples with some small residues, while the ex-
tended ISS free-surface multiple elimination algorithm can ac-
curately predict and completely eliminate the free-surface mul-
tiples without damaging the primaries.

CONCLUSIONS

We discussed and examined the impact of accommodating pre-
requisites (ghosts, source wavelet and radiation pattern) on
the ISS free-surface multiple elimination algorithm. The ISS
free-surface multiple elimination algorithm is modified and ex-
tended by accommodating a general source with radiation pat-
tern. The extended algorithm can provide added value com-
pared to previous methods for the fidelity of amplitude and
phase prediction of free-surface multiples at all offsets. It is
multidimensional and does not require any subsurface infor-
mation. The numerical tests show that if the prerequisites are
provided, the ISS free-surface multiple elimination algorithm
can, in principle, have the ability to predict more accurate free-
surface multiples and then remove them more effectively. This
is particularly important for the case, where free-surface mul-
tiples are proximal or interfering with other events and we can
not rely on adaptive subtraction to fix the errors in amplitude
and phase of the prediction.
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Accommodating the source wavelet and radiation pattern in the internal multiple attenuation algo-
rithm: Theory and initial example that demonstrates impact
Jinlong Yang∗ and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The inverse scattering series (ISS) internal multiple attenua-
tion algorithm (Araújo et al., 1994; Weglein et al., 1997) is
modified and extended by accommodating the source wavelet
and radiation pattern in order to enhance the fidelity of the am-
plitude and phase predictions of the internal multiples. The
extended ISS internal multiple attenuation algorithm is fully
data-driven to predict all first-order internal multiples for all
horizons at once, without requiring any subsurface informa-
tion. For data produced by a point source with a wavelet,
the amplitude and shape of the predicted internal multiples are
significantly improved by accommodating the source wavelet.
For data generated by a general source with a radiation pat-
tern, the new algorithm provides added value for predicting
the internal multiples by accommodating the source radiation
pattern. Therefore, the new extended ISS internal multiple at-
tenuation algorithm predicts more accurate internal multiples
and remove them more effectively when the source has a radi-
ation pattern.

INTRODUCTION

The inverse scattering series allows all seismic processing ob-
jectives, such as free surface multiple removal and internal
multiple removal to be achieved directly in terms of data, with-
out any estimation of the earth’s properties. The ISS inter-
nal multiple attenuation algorithm is a fully data-driven and
model-type independent algorithm (Weglein et al., 2003). It
can predict the correct time and approximate and well-understood
amplitude for all first-order internal multiples that generated
from all reflectors without any subsurface information.

The ISS internal multiple attenuation algorithm was first pro-
posed by Araújo et al. (1994) and Weglein et al. (1997). Mat-
son et al. (1999) extended the theory for land and OBC appli-
cations. Ramı́rez and Weglein (2005) discussed how to extend
the ISS internal multiple attenuation algorithm from attenu-
ation toward elimination of multiples. Herrera and Weglein
(2013) developed the 1-D ISS internal multiple elimination al-
gorithm for internal multiple generated by a single shallowest
reflector and Zou and Weglein (2013) further derived a general
form of the ISS internal multiple elimination algorithm. Liang
et al. (2013) and Ma and Weglein (2014) provided higher-order
terms in the inverse scattering series to remove spurious events.

The ISS internal multiple attenuation algorithm has certain
data requirements: (1) removal of the reference wavefield, (2)
an estimation of the source wavelet and radiation pattern, (3)
source and receiver deghosting, and (4) removal of the free-
surface multiples. The first three requirements can be obtained
by Green’s theorem methods (Zhang and Weglein, 2005; May-
han et al., 2012; Tang et al., 2013) and the free-surface multi-

ples can be removed by the ISS free-surface multiple elimi-
nation algorithm (Carvalho, 1992; Weglein et al., 2003; Yang
et al., 2013). Green’s theorem methods and the ISS free-surface
multiple elimination algorithm are consistent with the ISS in-
ternal multiple attenuation algorithm, since all are multidimen-
sional wave-theoretic processing methods and do not require
subsurface information.

The ISS internal multiple attenuation algorithm assumes that
the input data are spike wave. In other words, the input data
have been deconvolved. If the input data are generated by a
source wavelet instead of by a spike wave, the predicted first-
order internal multiple has convolved three source wavelets.
Hence, the source wavelet has a significant effect on the am-
plitude and shape of the predicted internal multiple. In this
paper, to improve the amplitude and the shape of a predicted
internal multiple, the ISS internal multiple attenuation algo-
rithm accommodates a source wavelet.

The new contribution relates to the fact that the ISS inter-
nal multiple attenuation algorithm assumes an isotropic point
source, i.e., it assumes that the source has no variation of am-
plitude or phase with take-off angle. A large marine air-gun ar-
ray will exhibit directivity and produce variations of the source
signature (Loveridge et al., 1984). In on-shore exploration,
even if there is no source array, the source can have radiation
pattern or directivity. That directivity has significant effects on
multiple removal or attenuation and AVO analysis. In seismic
data processing, it is important that we characterize the source
array’s effect on any seismic processing methods. Therefore,
to further improve the effectiveness of the ISS internal multi-
ple attenuation algorithm, it is extended to accommodate the
source radiation pattern. The synthetic data tests show that
accommodating the source wavelet and radiation pattern can
enhance the fidelity of the amplitude and phase predictions of
internal multiples.

THEORY

The ISS internal multiple attenuation algorithm (Araújo, 1994;
Weglein et al., 1997, 2003) for first-order internal multiple pre-
diction in a 2D earth is given by

b3(kg,ks,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dk1e−iq1(zg−zs)dk2eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2,ks,z3)ei(q2+qs)z3 , (1)

where ω , ks and kg are temporal frequency and the horizon-
tal wavenumbers for source and receiver coordinates, respec-
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tively. qs and qg are the corresponding vertical source and re-

ceiver wavenumbers, respectively. qi = sgn(ω)
√

ω2/c2
0− k2

i
for i = (g,s); c0 is the reference velocity. zs and zg are the
source and receiver depths; and zi (i = 1,2,3) represents pseu-
dodepth (vertical depth of the water speed migration). The
parameter ε is introduced to insure that the relations z1 > z2
and z3 > z2 are satisfied.

From the first-order equation of the inverse scattering series
D = Gd

0V1Pd
0 (Weglein et al., 2003), which can be represented

explicitly in 2D case as

D(xg,εg,xs,εs,ω) =
∫

dx1
∫

dz1
∫

dx2
∫

dz2

Gd
0(xg,εg,x1,z1,ω)V1(x1,z1,x2,z2,ω)Pd

0 (x2,z2,xs,εs,ω),(2)

where the data D have been deghosted and the reference wave-
field and free-surface multiples have been removed. Gd

0 and
Pd

0 are the direct reference Green’s function and the direct ref-
erence wavefield, respectively.

For a unit source, Pd
0 = Gd

0 . We take a Fourier transform over
xs and xg on both sides of equation 2 and define b1 as

b1(kg,ks,qg +qs)≡ V1(kg,qg,ks,qs,ω)
−2iqg

=−2iqsD(kg,ks,ω),

(3)
where b1 represents effective plane-wave incident data and
D(kg,ks,ω) is the Fourier-transformed prestack data. The in-
put b1 are introduced into equation 1 after an uncollapsed Stolt
migration (Weglein et al., 1997) that takes b1(kg,ks,qg + qs)
into the pseudodepth domain, b1(kg,ks,zi), by using the ref-
erence velocity, c0. Then, the first-order internal multiples
D3(kg,ks,ω), which are predicted by the ISS internal multi-
ple attenuation algorithm (equation 1), are obtained by

D3(kg,ks,ω) = (−2iqs)−1b3(kg,ks,qg +qs). (4)

For an isotropic point source, Pd
0 = A(ω)Gd

0 . Fourier trans-
forming over xs and xg on both sides of equation 2 gives

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω)/A(ω), (5)

where A(ω) is the source signature. After b3 has been pre-
dicted by equation 1, the first-order internal multiple is achieved
by convolving the source wavelet A(ω) back

D3(kg,ks,ω) = (−2iqs)−1A(ω)b3(kg,ks,qg +qs). (6)

For a general source with a radiation pattern (e.g., a source ar-
ray), the direct reference wavefield Pd

0 for a 2D case can be
expressed as an integral of the direct reference Green’s func-
tion Gd

0 over all air-guns in an array,

Pd
0 (x,z,xs,zs,ω)

=
∫∫

dx′dz′ρ(x′,z′,ω)Gd
0(x,z,x′+ xs,z′+ zs,ω), (7)

where (x,z) and (xs,zs) are the prediction point and source
point, respectively. (x′,z′) is the distribution of the source with
respect to the source locator (xs,zs). Using the bilinear form
of Green’s function and Fourier transforming over x, we obtain
the relationship between ρ and Pd

0 as

Pd
0 (k,z,xs,zs,ω) = ρ(k,q,ω)

eiq|z−zs|

2iq
e−ikxs . (8)

On the other hand, the reference wavefield Pd
0 can be solved

from the measured data by using Green’s theorem method (We-
glein and Secrest, 1990).

Since k2 + q2 = ω2/c2
0, q is not a free variable, hence, we

can not obtain ρ(x,z,ω) in space-frequency domain by tak-
ing an inverse Fourier transform on ρ(k,q,ω). However, the
projection of the source signature ρ(k,q,ω) can be achieved
directly from the direct reference wavefield Pd

0 in the f -k do-
main, where the variable k or q represent the amplitude varia-
tions of the source signature with angles.

Substituting the projection of the source signature ρ into equa-
tion 2 and Fourier transforming over xs and xg gives

b1(kg,ks,qg +qs) =−2iqsD(kg,ks,ω)/ρ(kg,qg,ω). (9)

Further details of obtaining ρ can be found in Yang et al. (2013)
and Yang (2014). The first-order internal multiple is calculated
from b3,

D3(kg,ks,ω) = (−2iqs)−1ρ(kg,qg,ω)b3(kg,ks,qg +qs).
(10)

All above derivations are 2D cases, and they can be directly
extended to 3D. From the derivations, we can see that the ker-
nel of the ISS internal multiple attenuation algorithm (equation
1) does not change and the source wavelet and radiation pat-
tern are imported by equations 5 and 9. The predicted internal
multiples D3 are also affected by the source wavelet and ra-
diation pattern in equations 6 and 10. If the source wavelet
is not incorporated into the ISS internal multiple attenuation
algorithm, the amplitudes and shapes of the predicted internal
multiples are not comparable with those of the internal mul-
tiples in the input data. To improve the effectiveness of the
internal multiple prediction, the ISS internal multiple attenua-
tion algorithm should be modified for its input and output by
accommodating the source wavelet and radiation pattern. This
accommodation can enhance the fidelity of the amplitude and
shape of the predictions of internal multiples.

NUMERICAL TESTS

In this section, we will present the numerical tests of the inter-
nal multiple prediction for the data generated by a point source
and a general source with a radiation pattern. The numerical
tests are based on a 1D acoustic model with varying velocity
and constant density, as shown in Figure 1. The synthetic data
that are generated by the finite-difference method. The data
have one shot gather with 2001 traces, and each trace has 301
time samples, with dt = 5ms. The trace interval is 5m.

The source wavelet effect on internal multiple prediction

For the data generated by a point source, the internal multi-
ple will be predicted by using the ISS internal multiple atten-
uation algorithm with and without source wavelet deconvolu-
tion. Figure 2 shows the input data and their corresponding
predicted internal multiples. They are plotted using the same
scale. In the input data, the first two strongest events are the
primaries, and the other events are internal multiples. Figures
2(b) and 2(c) show the predicted internal multiples using the
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Figure 1: One-dimensional acoustic constant-density medium.

ISS internal multiple attenuation algorithm with and without
source wavelet deconvolution. From Figures 2(b) and 2(c), we
can see that both algorithms predict the correct traveltimes, but
they predict different amplitudes and shapes for the internal
multiples. In Figure 2(b), the amplitude of the predicted in-
ternal multiple is comparable with the internal multiple in the
input data, while the amplitude is totally different from that of
the internal multiple in the input data in Figure 2(c).
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Figure 2: (a) The input data; (b) and (c) The predicted internal
multiples.

For details, we pick the middle trace (offset = 0) and the far
trace (offset = 1700m) from each image in Figure 2. The time
windows are chosen at 0.85s∼ 1.10s for the middle trace and
at 1.05s ∼ 1.25s for the far trace, as shown in Figure 3. For
the middle trace, it can be seen that the shape of the internal
multiple predicted by the ISS internal multiple attenuation al-
gorithm without source wavelet deconvolution (Figure 3(c)) is
totally different from that of the true internal multiple (Figure
3(a)). The predicted and true amplitudes are not comparable,
either. This is because the predicted internal multiples con-
volve three wavelets. However, comparing Figure 3(b) with
Figure 3(a), we can see that the amplitude and shape of the
internal multiple predicted by the ISS internal multiple attenu-
ation algorithm with source wavelet deconvolution are similar
to those of the true internal multiple, as shown in Figure 4(a).
It demonstrates that by accommodating the source wavelet de-
convolution, the amplitude and shape of the predicted internal
multiple are significantly improved for the internal multiple
prediction. For the far-offset traces, we obtain the similar re-
sults, as shown in Figures 3(e) and 4(b).

From the numerical test, we conclude that by accommodating
the source wavelet deconvolution, the ISS internal multiple at-
tenuation algorithm produces more accurate and encouraging
results for both zero offset and far offset. The predicted inter-
nal multiple has the correct traveltime, and the amplitude and
shape are significantly improved.
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Figure 3: (a), (b), (c) The middle traces, and (d), (e), (f) the far
traces.
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Figure 4: The comparison between the internal multiple (red)
in the input data and the predicted internal multiple (blue) at
(a) zero offset and at (b) far offset (1700m).

The radiation pattern effect on internal multiple prediction

For the data generated by a general source with a radiation pat-
tern (e.g., source array), we will predict the internal multiple
using the ISS internal multiple attenuation algorithm with and
without incorporating the source wavelet and radiation pattern.
Here, the synthetic data are generated by a source array using
the same model as Figure 1. The source array contains five
point sources in one line with 20m range. Here, we assume
that the source array only varies laterally with identical source
signatures, but the assumption is not necessary in the ISS in-
ternal multiple attenuation algorithm.

Figure 5(a) shows the input data generated by the source array.
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Similar with the data generated by the point source, the first
two strongest events are the primaries, and the other events
are internal multiples. Figures 5(b) and 5(c) present the inter-
nal multiples predicted by using the ISS internal multiple at-
tenuation algorithm with and without incorporating the source
wavelet and radiation pattern. From Figures 5(b) and 5(c), we
can see that both algorithms can predict the correct traveltime
and an acceptable amplitude of the internal multiple.
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Figure 5: (a) The input data; (b) and (c) the predicted internal
multiples.

To compare the internal multiple predictions in detail, the mid-
dle trace (offset = 0) and the far trace (offset = 1700m) are
picked from each image in Figure 5. We choose the time win-
dows at 0.85s∼ 1.10s for the middle trace and at 1.05s∼ 1.25s
for the far trace, as shown in Figure 6. Comparing the middle
and far traces, we can see that the amplitude and shape of the
internal multiple predicted by the ISS internal multiple atten-
uation algorithm with and without incorporating the radiation
pattern are very similar to those for the true internal multiple
in the input data. Their comparisons are plotted in Figure 7.
At zero offset, there are no visible differences, as shown in
Figure 7(a), while at far offset, Figure 7(b) demonstrates that
the amplitude of the internal multiple prediction is further im-
proved by accommodating the radiation pattern. Therefore, for
the general source data, the modified ISS internal multiple at-
tenuation algorithm that incorporates the source wavelet and
radiation pattern can enhance the accuracy and effectiveness
of the amplitude prediction of the internal multiple.

CONCLUSIONS

The ISS internal multiple attenuation algorithm is modified
and extended by accommodating the source wavelet and radi-
ation pattern. The extended ISS internal multiple attenuation
algorithm enhances the fidelity of amplitude and phase pre-
dictions of the internal multiple. It retains all the merits of the
original algorithm that is fully data-driven and does not require
any subsurface information. In synthetic data tests, for point-
source data, the predictions of the amplitudes and shapes of
internal multiples are significantly improved by incorporating
the source wavelet. For data generated by a general source
with a radiation pattern, the prediction is further improved by
incorporating the source radiation pattern into the ISS internal
multiple attenuation algorithm. This contribution plays a part
in the plan to deliver a higher level of predictive capability,
where primaries and internal multiples are proximal or over-
lapping and cannot rely on adaptive subtraction to fix errors in
the prediction.
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Figure 6: (a), (b), (c) The middle traces, and (d), (e), (f) the far
traces.
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Figure 7: The comparison between the true internal multiple
(red) in the input data and the internal multiple predicted by the
ISS internal multiple attenuationalgorithm with (green dash)
and without (blue) incorporating the source wavelet and radia-
tion pattern at (a) zero offset and at (b) far offset (1700m).
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The significance of incorporating a 3-D point source in the inverse
scattering series free-surface multiple elimination algorithm for a 1-D

subsurface

Xinglu Lin, and Arthur B. Weglein

Abstract

Based on the current 3-D inverse-scattering-series (ISS) free-surface-multiple-elimination
(FSME) algorithm (Carvalho, 1992; Weglein et al., 1997, 2003) that was developed for a 3-D
point source and 3-D earth, this report derives an ISS FSME algorithm that retains the dimen-
sion of the source (i.e., 3D point source) and reduces the subsurface dimension from 3-D to
1-D. Applying this 3D-source-1D-earth algorithm will accurately predict both the phase and
the amplitude of the free-surface multiples in seismic data that are generated by a 3-D point
source and 1-D earth (e.g., Central North Sea), compared to the frequently applied 1.5-D ISS
FSME algorithm that assumes a 2-D line source and 1-D earth.

In this paper, numerical tests are performed on 3-D source synthetic data sets generated
from a 1-D subsurface, to examine the significance of incorporating a 3-D source in FSME
algorithm and the impacts of FSM residues on the subsequent ISS internal multiple attenuation.
The results demonstrate that the 3-D source-1-D earth ISS FSME algorithm can accurately re-
move the FSM events in 3-D source data. This successful removal of free-surface multiples
provides a satisfactory prerequisite for subsequent processing (e.g., internal-multiple attenua-
tion/elimination).

1 Introduction

Multiple removal is a long-standing and challenging task in seismic data processing, which impacts
the subsequent imaging and inversion procedures. Many efforts have been made to attenuate or
eliminate the free-surface multiples (events that have experienced at least one downward reflection
at the air-water surface) in data (e.g., Verschuur et al., 1992; Carvalho, 1992; Weglein et al., 1997,
2003; Weglein and Dragoset, 2008). Among these methods, the inverse scattering series (ISS)
free-surface-multiple-elimination (FSME) algorithm provides a multidimensional procedure that
eliminates all free-surface multiples (Carvalho, 1992; Weglein et al., 1997, 2003) through a simple
subtraction. This approach has its strengths in that it does not require subsurface information,
and it can provide the accurate time and amplitude of all free-surface multiples. However, other
approaches, such as the SRME method, often adopt adaptive subtraction with certain criteria (e.g.,
energy minimization) to eliminate the free-surface multiples, because these methods can provide
accurate time but approximate amplitude of free-surface multiples. Adaptive subtraction works well
at times when the events are isolated, however, it can generate issues when the free-surface multiples
and primaries are interfering or destructively overlapping. That is because energy minimization
assumes a minimized/decreased energy in data after multiple subtraction, which is invalid when the
energy increases after removing destructively overlapping free-surface multiples and at the same
time recovering the primaries. In other words, for a complex geology, it is in need of accurate free-
surface-multiple predictions for both time and amplitude, where the adaptive subtraction can fail to
effectively remove the free-surface multiples and can possibly damage the primaries.
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As we mentioned before, the ISS FSME algorithm is a multidimensional procedure that can
completely remove the free-surface multiples from data without knowing any subsurface informa-
tion. If we consider a 3-D point source as the real source dimension, the complete 3-D ISS FSME
algorithm, which assumes a 3-D point source and a 3-D subsurface, can successfully predict both
accurate time and amplitude of all free-surface multiples with a complete dataset (requires areal
coverage of sources and for each source requires the areal coverage of receivers). Even though the
3-D ISS FSME algorithm is a complete and accurate method, there are reasonable circumstances
that require less data and less computational cost, for instance, when the earth property only varies
in 1-D and the source dimension retains 3-D. For a typical pre-stack shot gather coming from a 1-D
subsurface, the 1.5-D ISS FSME algorithm is frequently and naturally applied to predict free-surface
multiples (Carvalho, 1992). Since the 1.5-D ISS FSME algorithm is derived from a 2-D line source
ISS FSME algorithm for a 1-D subsurface, it can only provide the accurate phase and amplitude of
free-surface multiples generated by a 2-D line source, rather than a 3-D point source. When the data
come from a 3-D point source and a 1-D subsurface, this 1.5-D algorithm can produce issues and
even fail to effectively eliminate the free-surface multiples.

This report will focus on the specific problem of a 3-D source-1-D subsurface ISS FSME algo-
rithm by reducing a complete 3-D ISS FSME algorithm. The reduced algorithm preserves the real
3-D source dimension and demands only one pre-stack shot gather for the 3-D source data coming
from a 1-D earth. The numerical tests are performed on 3-D source data sets. The results evaluate
the significance of incorporating a 3-D source in a 1-D ISS FSME algorithm by comparing with a
frequently used 2-D line source 1-D earth ISS FSME algorithm for 3-D point source data.

2 3-D and 2-D ISS free-surface-multiple elimination algorithm

The preparation of the 3-D FSME algorithm starts from data D(xg, yg, εg, xs, ys, εs; t), where
(xg, yg, εg) and (xs, ys, εs) are the receiver- and source-location, respectively. In addition, the pre-
processing - including reference wave-field removal, deghosting and wavelet estimation - needs to
be achieved before the ISS free-surface multiple prediction. The preprocessed data are represented
by D′. The 3-D source ISS free-surface multiple elimination algorithm can be written as

D′n(kxg, kyg, kxs, kys;ω) =
1

2iπ2ρrB(ω)

∫ ∞
−∞

∫ ∞
−∞

dkxdkyD
′
1(kxg, kyg, kx, ky;ω)

×qD′n−1(kx, ky, kxs, kys;ω)eiq(εg+εs), (1)

for n ≥ 2 and

D′(kxg, kyg, kxs, kys;ω) =
∞∑
n=1

D′n(kxg, kyg, kxs, kys;ω). (2)

D′ contains only the deghosted primaries and internal multiples. B(ω) and ρr are the source
signature and reference medium density, respectively. The vertical wavenumber is defined by
q =

√
( ωc0 )2 − k2

x − k2
y . The 3-D algorithm in equations (2) and (4) assumes that the acquisition

applies 3-D sources and 3-D receivers for a 3-D subsurface.

Similarly, a set of 2-D dataD(xg, xs; t) can be transformed into wavenumber-frequency domain
and deghosted as D′(kg, ks;ω). The 2-D ISS free-surface-multiple-elimination algorithm is,

D′n(kg, ks;ω) =
1

iπρrB(ω)

∫ ∞
−∞

dkD′1(kg, k;ω)qD′n−1(k, ks;ω)eiq(εg+εs), (3)
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for n ≥ 2 and

D′(kg, ks;ω) =
∞∑
n=1

D′n(kg, ks;ω), (4)

where the vertical wave-number is q =
√

( ωc0 )2 − k2. In contrast to the 3-D case, the algorithm in
equations (3) and (6) assumes a 2-D subsurface, in which the acquisition corresponds to 2-D line
sources and 2-D line receivers.

In the following sections, both the 3-D algorithm and 2-D algorithm are reduced for the data
from a 1-D subsurface, where in the 3-D case the source is a 3-D point source and in the 2-D case
the source is a 2-D line source. For convenience, the superscript 1DE represents the 1-D earth
assumption for different sources (For example, 2-D line source 1-D earth: 2D1DE; 3-D point
source 1-D earth: 3D1DE).

3 The FSME algorithm assuming a 2-D line source and a 1-D subsurface

In developing the algorithm for 1-D earth pre-stack data, it was natural that people started with the 2-
D line source ISS FSME algorithm and then reduced it for 1-D subsurface data. The data that occurs
in the 2-D earth can be written as D(xg, xs;ω) or D(xm, xh;ω) in the space-frequency domain,
where xm = xg + xs and xh = xg − xs. The data from a 1-D earth, shown as D2D1DE(xh;ω),
depends only on the source-receiver offset (xh) and the frequency (ω). The Fourier transform over
the complete 2-D data (D) for a 1-D earth can be shown as,

D(kg, ks;ω) =
∫∫

eikgxge−iksxsD2D1DE(xh;ω)dxgdxs (5)

Rearranging the variables from (kg, ks) to (kh, km) can give us,

D(kh, km;ω) =
1
2

∫
eikhxhD2D1DE(xh;ω)dxh

∫
eikmxmdxm

= D2D1DE(kh;ω)(2π)δ(2km), (6)

where kh = kg+ks
2 and km = kg−ks

2 . The data is independent of xm and can come out of the xm
integral. Consequently, the Fourier transform integral over xm can produce a Dirac delta function in
km. Since the 2-D source ISS FSME algorithm needs data in (kg, ks), we can change the variables
in equation (6) back to (kg, ks) as,

D(kg, ks;ω) = D2D1DE(kg;ω)(2π)δ(kg − ks), (7)

where kg = ks = km defined by the sifting property of the Dirac delta function.

As part of a complete data set, the preprocessed data D′ has the same symmetry as D, which
is D′n(kg, ks;ω) = D′2D1DE

n (kg;ω)(2π)δ(kg − ks). By applying this 1-D earth data D′2D1DE
n to

equation (3), the algorithm becomes

D′2D1DE
n (kg;ω)(2π)δ(kg − ks)

=
1

iπρrB(ω)

∫ ∞
−∞

dkD′2D1DE
1 (kg;ω)(2π)δ(kg − k)

×qD′2D1DE
n−1 (k;ω)(2π)δ(k − ks)eiq(εg+εs). (8)
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The lateral integral (
∫
dk) can be evaluated using the Dirac delta functions. Then equation (8)

produces the reduced 1.5-D free-surface multiple eliminator as,

D′2D1DE
n (kg;ω)δ(kg − ks)

=
2

iρrB(ω)
δ(kg − ks)D′2D1DE

1 (kg;ω)qD′2D1DE
n−1 (ks;ω)eiq(εg+εs). (9)

Integrating over kg on both sides will provide the FSME assuming a 2-D line source as

D′2D1DE
n (kh;ω) =

2
iρrB(ω)

D′2D1DE
1 (kh;ω)qD′2D1DE

n−1 (kh;ω)eiq(εg+εs), (10)

for n ≥ 2 and,

D′2D1DE(kh, ω) =
∞∑
n=1

D′2D1DE
n (kh;ω), (11)

where kh = kg = ks (by evaluating the Dirac delta functions) and q = sgn(ω)
√

(ω/c0)2 − k2
h.

Free-surface multiple removed data in the space domain can be obtained by an inverse Fourier
transform as,

D′2D1DE(xh;ω) =
1

2π

∫
D′2D1DE(kh;ω)eikhxhdkh. (12)

The process following equations (8) and then (15) gives us the ISS FSME algorithm assuming a
2-D line source for a 1-D subsurface.

4 The FSME algorithm assuming a 3-D point source and a 1-D subsurface

3-D data generated by a 1-D earth depend only on the source-receiver offset and the frequency and
has a spatial circular symmetry in cylindrical coordinates (independent of azimuth angle). This
symmetry makes it convenient to study the 1-D earth problem with cylindrical coordinates, which is
characterized by a radial length, an azimuth angle and a vertical position. The 3-D vectors (x, y, z)
and (kx, ky, kz) in Cartesian coordinates can be transformed to (ri, θi, zi) and (kri, φi, kzi), i ∈
{g, 1, 2, s}, in cylindrical coordinates.

The dependence of 3-D data for a 1-D earth can be expressed as D3D1DE(|~rg − ~rs|, ω) or
D3D1DE(rh, ω), where ~rg and ~rs are the projections of receiver and source locations on to the x-y
plane, respectively. rh is the magnitude of the difference between ~rg and ~rs. Due to the cylindrical
symmetry, the 3-D source-1-D subsurface data can be transformed to the (kri, ω) domain as (X.
Lin, A. Weglein, 2014 M-OSRP Annual Report),

D( ~kg, ~ks;ω) = D3D1DE(krh;ω)(2π)2 δ(krg − krs)δ(φg − φs)
krg

, (13)

where krh = krg. The receivers are required along the r-direction in D3D1DE(rh, ω), because

D′3D1DE
1 (krh;ω) = 2π

∫ ∞
0

D′3D1DE(rh;ω)J0(krhrh)rhdrh. (14)

The form of data in the (kri;ω) domain (equation (13)) contains the Dirac delta functions in cylin-
drical coordinates, which is equivalent to δ(kxg − kxs)δ(kyg − kys) in Cartesian coordinates.
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Substitute equation (13) into the full 3-D ISS FSME algorithm in equation (2) and change the
variables of integration dkxdky to krdkrdφ to get,

D′3D1DE
n (krg;ω)(2π)2 δ(krg − krs)δ(φg − φs)

krg

=
1

2iπ2ρrB(ω)

∫ ∞
−∞

∫ ∞
−∞

krdkrdφ(2π)2 δ(krg − kr)δ(φg − φ)
krg

D′3D1DE
1 (krg;ω)

×q(2π)2 δ(kr − krs)δ(φ− φs)
kr

D′3D1DE
n−1 (kr;ω)eiq(εg+εs), (15)

where εg and εs are the depth of source and receivers, respectively. The lateral integrals
∫∫

krdkrdφ
can be evaluated due to the Dirac delta functions as above. The equation turns out to be,

D′3D1DE
n (krg;ω)

δ(krg − krs)δ(φg − φs)
krg

=
2

iρrB(ω)
δ(krg − krs)δ(φg − φs)

krg
D′3D1DE

1 (krg;ω)qD′3D1DE
n−1 (krs;ω)eiq(εg+εs). (16)

Integrating over krg and φg on both sides gives the 3-D source ISS FSME algorithm for 1-D sub-
surface as,

D′3D1DE
n (krh;ω) =

2
iρrB(ω)

D′3D1DE
1 (krh;ω)qD′3D1DE

n−1 (krh;ω)eiq(εg+εs), (17)

for n ≥ 2 and

D′3D1DE(krh;ω) =
∞∑
n=1

D′3D1DE
n (krh, ω), (18)

where krh = krg = krs and q =
√

( ωc0 )2 − k2
rh.

D′3D1DE
n (krh, ω) (nth-order FS multiple prediction) orD′3D1DE(krh, ω) (FS multiple removed

data) need to be transformed back to the space domain by an inverse Hankel transform (derived
from two dimension Fourier transform due to the independence of the azimuth angle), instead of an
inverse Fourier transform. The free-surface multiple prediction D′3D1DE

n (rh;ω) can be obtained by
using,

D′3D1DE
n (rh;ω) =

1
2π

∫ ∞
0

D′3D1DE
n (krh;ω)J0(krhrh)krhdkrh. (19)

Similarly, the FS multiple removed data can be transformed to the space-time domain by,

D′3D1DE(rh;ω) =
1

2π

∫ ∞
0

D′3D1DE(krh;ω)J0(krhrh)krhdkrh. (20)

In an acquisition geometry where sources and receivers are on the same streamer in a 3-D survey,
we can take r along any angle in the x-y plane, including r = x.

5 Numerical Results

The synthetic 3-D source data are generated based on acoustic layered models using a limited band-
width. The data sets are generated in the (krh, ω) domain by the reflectivity method. All the datasets
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are pre-stack shot records without reference wavefield or ghost, which satisfies the prerequisites of
the ISS FSME algorithm. As an initial investigation in Model I, only the leading order FS multi-
ple prediction (D′2D1DE

2 or D′3D1DE
2 ) is predicted and removed in all the results. Experiments in

Model II applies the 2nd order ISS FS multiple elimination algorithm (D′2D1DE
3 orD′3D1DE

3 ) since
data contains 2nd-order FS multiple.

5.1 Model I: examine the significance of incorporating a 3-D source in ISS FSME
algorithm

35m

35m

FS 5m
MS

1500m/s 

2500m/s 

6000m/s 

→ r

Figure 1: Model I

The first example is tested on the data generated by Model I shown in figure 1. The original 3-D
source data is presented in figure 2 (a), which contains two primaries and two free-surface multiples.
All the events are isolated in recording time.

Figure 2 presents the FS multiple prediction and removal results assuming a 3-D point source,
following equations (18) and (19). Figures 2 (a) and (b) contain the original 3-D source data as input
and FS multiple prediction which is the output. The result in figure 2 (b) provides the accurate time
and exact amplitude of free-surface multiples. After simply subtracting (b) from (a), the free-surface
multiples are completely removed from the input data. The wiggle comparison of trace number 360
in figure 2 (d) illustrates that the multiple events predicted by ISS FSME algorithm assuming a
3-D point source (dashed red line) has the same wavelet shape and amplitude as the free-surface
multiples in the data (solid blue line).

In contrast to the 3-D source prediction, the 2-D line source ISS free-surface multiple prediction
(figure 3 (b), (d)) can generate a deviated wavelet and a much smaller amplitude than the original
free-surface multiple (figure 3 (a)). In this case, subtracting the prediction from the data can produce
free-surface multiple residues in the result (figure 3 (c)), which is harmful to subsequent processing
(e.g. ISS internal multiple attenuation/elimination).

Generally, the energy minimization criterion will be applied in this situation to make the sub-
traction effective, which is known as adaptive subtraction. And indeed the adaptive method works
well when the events in the data are isolated, as in the synthetic data shown in this section. How-
ever, when the primaries and multiple are overlapping, the energy minimization criterion can fail to
remove the multiples without harming the primaries.
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Figure 2: 3-D point source free-surface multiple prediction and removal, (a) 3-D point source data,
(b) FS multiple prediction assuming a 3-D point source, (c) FS multiple removal assuming a 3-D
point source through simple subtraction, (d) wiggle comparison of trace between the original data
(solid blue line) and FS multiple prediction (dashed red line).
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Figure 3: 2-D line source free-surface multiple prediction and removal, (a) 3-D point source data,
(b) FS multiple prediction assuming a 2-D line source, (c) FS multiple removal assuming a 2-D line
source through simple subtraction, (d) wiggle comparison of trace between the original data (solid
blue line) and FS multiple prediction (dashed red line).
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5.2 Model II: examine the consequence of mismatching the source dimension in
FSM removal on the ISS internal multiple attenuation

30m

40m

FS MS
v=1500m/s, 
ρ=1g/cm3 

→ r

v=1500m/s, 
ρ=2.5g/cm3 

v=1500m/s, 
ρ=8.5g/cm3 

Figure 4: Model II

The second test is performed on the data that is generated by a 3-D point source and den-
sity variation model (figure 4) using reflectivity method. The original data in figure 5 (a) contain
two primaries, three free-surface multiples and one internal multiple. Since the data contains both
first-order and second-order free-surface multiples, the second-order ISS FSME algorithm will be
applied to eliminate the free-surface multiples in the original data.

Figure 5 (b) presents the free-surface multiple removed result assuming a 3-D point source,
which matches the source dimension in the synthetic data. Incorporating the 3-D source can pro-
vide both the accurate time and amplitude for this 3-D point source dataset. Therefore, all the
free-surface multiples can be completely removed. The result shown in figure 5 (b) produces the
satisfactory prerequisite of subsequent ISS internal multiple attenuation algorithm. Continued ISS
internal multiple attenuation prediction has been shown in the right panel of figure 5 (c). The yellow
arrow is pointed to the predicted internal multiple event. The internal multiple attenuation predic-
tion works well as an attenuator, which provides accurate time and approximate amplitude of the
internal multiple event.

However, applying a frequently used 2-D line source FSME algorithm on a 3-D point source
data can make the prediction far from effective. The FS multiple removed result assuming a 2-D
line source has been shown in figure 6 (b). Compared to the original data shown in figure 6 (a), the
FS multiple residues present in the result after FS multiple removal. If the residues of FS multiples
exist in the input of subsequent ISS internal multiple attenuation, several artifacts will occur in the
internal multiple prediction. Figure 6 (c) shows the source-dimension-mismatched FSME result
in the left panel and the internal multiple prediction using the left panel result as input in the right
panel. The artifacts (right panel of figure 6 (c)) can be cataloged as (1) false events (pointed by green
arrows), (2) events sitting on the FS multiple residues (pointed by blue arrows), and (3) events sitting
on the internal multiple prediction (pointed by yellow arrow).

The causes of different artifacts have been in figure 7, figure 8 and figure 9 with one example.
The internal multiple attenuation algorithm selects events, which satisfy the lower-higher-lower
relation in vertical time, from input b1. Summing over the time in two outer b1 (denoted with a blue
font) and then subtracting the time in middle b1 (denoted with a red font) can produce the phase of
the events in prediction. Figure 7 shows the origin of the false events that do not exist in the original
data. Generally, false events can occur when the outer b1s contribute a large time primary and the
middle b1 contributes a earlier free-surface multiple event. Figure 8 presents the second artifact,
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which can sit on the free-surface multiple residues. In figure 8, this kind of artifact can make the
free-surface multiples residues worse after subtracting the right panel from left panel. Another
artifact, sitting on the internal multiple prediction as shown in figure 9, has the possibility to destroy
the internal multiple prediction. The artifact event in figure 8 is not supposed to be generated in
principle. Nevertheless, if the input data contains FS multiple residues, this event can be generated
and it can enlarge the amplitude of the internal multiple prediction. In this case, the attenuation can
fail when the amplitude of prediction is over the amplitude of the original internal multiple.
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Figure 5: (a) Original 3-D point source data contain primaries, free-surface multiples and internal
multiple (b) ISS free-surface multiple removal result assuming a 3-D point source and (c) com-
parison between 3-D point source FSME result (shown in (b), left panel) and continued 3-D point
source ISS internal multiple attenuation result using the result in (b) as input (right panel). Yellow
arrow: internal multiple prediction.

6 Conclusions

In this report, a reduced and modified 3-D source ISS free-surface-multiple-elimination algorithm
has been proposed for a 1-D subsurface. The numerical results demonstrate that the modified algo-
rithm can eliminate the free-surface multiple events for one 3-D shot gather. However, using a 2-D
line source ISS FSME algorithm can produce a much less effective prediction with small amplitude.
When the events are interfering to each other, adaptive methods have difficulties in precisely remov-
ing the multiples without harm to primaries, whether one is using local search method (Verschuur
et al., 1992) or global search method (Carvalho and Weglein, 1994). Furthermore, the subsequent
ISS internal multiple prediction depends on the success of free-surface multiple removal. The re-
sults shows that using an input data with free-surface multiple residues can produce artifacts in
subsequent ISS internal multiple attenuation algorithm. Therefore, any step/prerequisite that cannot
be done will lead to consequence of ineffective subsequent processing. In other words, each prereq-
uisite should be satisfied before the next processing. It is essential to make sure that each step can
be done right before the start of subsequent step.
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Figure 6: (a) Original 3-D point source data contain primaries, free-surface multiples and internal
multiple (b) ISS free-surface multiple removal result assuming a 2-D line source and (c) comparison
between 2-D line source FSME result (shown in (b), left panel) and continued 3-D point source ISS
internal multiple attenuation result using the result in (b) as input (right panel). Green arrow: false
events; Blue arrow: events sitting on the FSM residues; Yellow arrow: events sitting on the internal
multiple prediction.
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Figure 7: The analysis of the false events generated by ISS internal multiple prediction using the
input that contains FS multiple residues.
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Figure 8: The analysis of the events sitting on the FSM residues generated by ISS internal multiple
prediction using the input that contains FS multiple residues.
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Figure 9: The analysis of the events sitting on the internal multiple prediction generated by ISS
internal multiple prediction using the input that contains FS multiple residues.
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The significance of incorporating a 3-D point source in the inverse scattering series internal multiple
attenuator for a 1-D subsurface
Xinglu Lin∗ and Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

In this paper, the 3-D inverse scattering series (ISS) internal
multiple attenuation algorithm (Araújo et al., 1994; Weglein
et al., 1997, 2003) is modified for a one-dimensional subsur-
face to incorporate a 3-D point source in multiple predictions,
for improved realism and effectiveness. The new algorithm,
which assumes the earth is only varying in the z-direction (1-
D subsurface/earth, reasonable in many circumstances in Cen-
tral North sea (Duquet et al., 2013), on-shore Canada, and the
Middle East), represents more than a small increase in effec-
tiveness of predicting the shape and amplitude of multiples,
compared to a frequently employed 1.5-D ISS internal multi-
ple attenuator (assuming a 2-D line source and a 1-D earth).
The numerical tests are performed on a 3-D source synthetic
data set from a 1-D subsurface. The results demonstrate that
the new algorithm incorporating a 3-D point source can change
the prediction from ’causing harm’ to ’providing benefit’ in
comparison to an internal multiple attenuation algorithm that
assumes a 1-D earth and a line source.

INTRODUCTION

The current state of ISS algorithms provides a multidimen-
sional procedure that eliminates all free-surface multiples and
attenuates all internal multiples (Carvalho, 1992; Araújo et al.,
1994; Weglein et al., 1997, 2003). Yanglei Zou and Chao Ma
are pioneering new ISS capability for internal multiple removal
(Zou and Weglein, 2014; Liang et al., 2013; Ma and Weglein,
2014). This approach has its unique strengths in that it does not
require subsurface information and is even independent of the
earth model-type. These multidimensional methods, the ISS
internal multiple attenuation algorithm (Araújo et al., 1994;
Weglein et al., 1997) can predict the accurate time and approx-
imate amplitude of internal multiple (that are generated by the
reflectors below the free-surface). The data requirement of this
method depends on how many dimensions are assumed to be
spatially variable in the subsurface. For example, the original
2-D ISS internal multiple attenuation algorithm (assuming 2-
D line sources and 2-D line receivers) requires a collection of
shot records on a line. However, for a 3-D subsurface (assum-
ing 3-D point sources and 3-D point receivers), the algorithm
needs the sources everywhere on the measurement plane and
each source needs the receivers everywhere on the plane.

The implementations on this method have shown promising
results for marine (e.g. Ferreira, 2011; Matson and Weglein,
1996) and on-shore cases (e.g. Fu et al., 2010; Luo et al., 2011;
Terenghi et al., 2011). There are circumstances where it is rea-
sonable to assume a 1-D subsurface (e.g. Central North sea
(Duquet et al., 2013), on-shore Canada, and the Middle East).
Recently, the 1.5-D ISS internal multiple attenuator (the algo-
rithm reduced from a complete 2-D ISS internal multiple atten-

uation algorithm for a 1-D subsurface) has been successfully
applied on Saudi Aramco on-shore data (Luo et al., 2011) and
also produced a positive result for the Encana land data (Fu
and Weglein, 2014).

In this abstract, we will incorporate a 3-D point source into the
1-D subsurface ISS internal multiple attenuation algorithm to
develop a more realistic algorithm and to evaluate the signifi-
cance of including the 3-D source in the algorithm.

THE 3-D AND 2-D ISS INTERNAL MULTIPLE ATTEN-
UATION ALGORITHM

The ISS internal multiple attenuator was originally proposed
by Araújo et al. (1994) and Weglein et al. (1997). The prepa-
ration of the 3-D ISS internal multiple prediction starts from
data D(xg,yg,εg,xs,ys,εs, t), where (xg,yg,εg) and (xs,ys,εs)
are the receiver- and source-location, respectively. For the
fixed depth of sources and receivers (omit εs,εg), the b1 term
is defined by the data in wavenumber-frequency domain as
b1(~kg,~ks,qg +qs) =−2iqs ·D(~kg,~ks,ω), where the vertical

wavenumber is qi = sgn(ω)
√

(ω/c0)2− k2
xi
− k2

yi
, i ∈ {g,s}

and ~kg = (kxg ,kyg), ~ks = (kxs ,kys). The b1 term can be Fourier
transformed to the depth domain as b1(~kg,~ks,z), and corre-
sponds to an un-collapsed Stolt migration. The ISS internal
multiple attenuation algorithm in 3-D is

b3D
3 (kxg ,kyg ,kxs ,kys ;ω)

=
1

(2π)4

∫∫
dkx1 dkx2

∫∫
dky1 dky2 e−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞
dz1b1(kxg ,kyg ,kx1 ,ky1 ,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(kx1 ,ky1 ,kx2 ,ky2 ,z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε
dz3b1(kx2 ,ky2 ,kxs ,kys ,z2)ei(q2+qs)z3 , (1)

where the qi = sgn(ω)
√

(ω/c0)2− k2
xi
− k2

yi
, i ∈ {g,1,2,s},

and b3D
3 (kxg ,kyg ,kxs ,kys ,ω) is a 3-D internal multiple attenu-

ator in wavenumber-frequency domain. The 3-D algorithm in
equation (1) assumes that the acquisition applies 3-D sources
and 3-D receivers for a 3-D subsurface. Two dimension space
and time inverse Fourier transforming b3D

3 (kxg ,kyg ,kxs ,kys ,ω)/
(−2iqs) can produce the 3-D space-time attenuator, which pre-
dict the internal multiple accurately in time and approximately
in amplitude. In addition, (b1 + b3)/(−2iqs) can generate the
result after multiple removal when it is returned to the space-
time domain.

Similarly, a set of 2-D data D(xg,xs, t) can be transformed into
wavenumber-frequency domain as D(kg,ks,ω), which defines
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the 2-D b1(kg,ks,qg +qs) =−2iqs ·D(kg,ks,ω). And then the
2-D ISS internal multiple attenuation algorithm is

b2D
3 (kg,ks;ω)

=
1

(2π)2

∫∫
dk1dk2e−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε
dz3b1(k2,ks,z2)ei(q2+qs)z3 , (2)

where the vertical wavenumber is qi = sgn(ω)
√

(ω/c0)2− k2
i ,

i ∈ {g,1,2,s}, b1(kg,ks,z) is an un-collapsed Stolt migration
of a 2-D data (transform b1(kg,ks,qg + qs) back to depth do-
main) , and b2D

3 (kg,ks,ω) is a 2-D internal multiple attenua-
tor in wavenumber-frequency domain. The 2-D attenuator in
space-time domain can be obtained by inverse Fourier trans-
forming b2D

3 (kg,ks,ω)/(−2iqs). In contrast to the 3-D case,
algorithm in equation (2) assumes a 2-D subsurface, in which
the acquisition corresponds to 2-D line sources and 2-D line
receivers.

In the following sections, both the 3-D algorithm and 2-D al-
gorithm are reduced for the data from a 1-D subsurface, where
in the 3-D case the source is a 3-D point source and in the 2-D
case the source is a line source. For convenience, the super-
script 1DE represents the 1-D earth assumption for different
sources (For example, 2-D line source 1-D earth: 2D1DE; 3-
D point source 1-D earth: 3D1DE).

THE ISS INTERNAL MULTIPLE ATTENUATOR ASSUM-
ING A 2-D LINE SOURCE FOR A 1-D SUBSURFACE

In developing the algorithm for a 1-D earth pre-stack data, it
was natural that people started with the 2-D ISS internal mul-
tiple attenuation algorithm and then reduced it for a 1-D sub-
surface data. The data that occurs in the 2-D earth can be pre-
sented as D(xg,xs,ω) or D(xm,xh,ω) in space-frequency do-
main, where xm = xg + xs and xh = xg − xs. The data from
a 1-D earth, shown as D2D1DE(xh,ω), only depends on the
source-receiver offset (xh) and the frequency (ω). The Fourier
transform over the 2-D data for a 1-D earth, which is needed
for the algorithm, can be shown as,

D(kg,ks;ω) =
∫∫

eikgxg e−iksxs D2D1DE(xh,ω)dxgdxs

=
1
2

∫
eikhxh D2D1DE(xh,ω)dxh

∫
eikmxm dxm

= D2D1DE(kh,ω)(2π) ·δ (kg− ks), (3)

where kh = kg+ks
2 and km = kg−ks

2 . The data is independent
of xm and can come out of the integral. Consequently, the
Fourier transform integral over xm can produce a Dirac delta
function in km. b1 is defined as b1(kg,ks,qg + qs) = −2iqs ·

D(kg,ks,ω). The un-collapsed Stolt migration b1 can be ex-
pressed by b2D1DE

1 as,

b1(kg,ks,z) = b2D1DE
1 (kh,z)(2π) ·δ (kg− ks). (4)

By applying this 1-D earth b1 to the equation (2), the lateral in-
tegrals (

∫ ∫
dk1dk2) can be evaluated by the Dirac delta func-

tions. Then equation (2) produces the reduced 1.5-D internal
multiple attenuator as,

b2D1DE
3 (kh;ω) =∫ +∞

−∞
dz1b2D1DE

1 (kh,z1)ei2qz1

∫ z1−ε

−∞
dz2b2D1DE

1 (kh,z2)e−i2qz2

×
∫ +∞

z2+ε
dz3b2D1DE

1 (kh,z3)ei2qz3 , (5)

where kh = kg = ks (evaluating by the Dirac delta functions)

and q = sgn(ω)
√

(ω/c0)2− k2
h. Prediction D3 in the space

domain can be obtained by an inverse Fourier transform as,

D2D1DE
3 (xh;ω) =

1
2π

∫
b2D1DE

3 (kh;ω)/(−2iqs)eikhxh dkh.

(6)
The process following equations (5) and then (6) gives us the
ISS internal multiple attenuation algorithm assuming a 2-D
line source for a 1-D subsurface.

THE ISS INTERNAL MULTIPLE ATTENUATOR ASSUM-
ING A 3-D POINT SOURCE FOR A 1-D SUBSURFACE

The 3-D data generated by a 1-D earth only depends on the
source-receiver offset and the frequency, which has a spatial
circular symmetry in cylindrical coordinates (independence of
azimuth angle). This symmetry makes it convenient to study
the 1-D earth problem with cylindrical coordinates. The 3-
D vectors (x,y,z) and (kx,ky,kz) in Cartesian coordinates can
be transformed to (ri,θi,zi) and (kri,φi,kzi), i ∈ {g,1,2,s},
in cylindrical coordinates, which is characterized by a radial
length, an azimuth angle and a vertical position. The depen-
dence of a 3-D data for a 1-D earth can be expressed as D3D1DE

(|~rg −~rs|,ω) or D3D1DE(rh,ω), where the ~rg and ~rs are the
projection of receiver and source locations on x-y plane, re-
spectively. rh is the magnitude of the difference between ~rg
and ~rs. Due to the cylindrical symmetry, the 3-D source-1-D
subsurface data can be transformed to (kri,ω) domain as,

D(~kg,~ks;ω) = D3D1DE(krh;ω)(2π)2 δ (krg− krs)δ (φg−φs)
krg

,

(7)
where krh = krg. The receivers are required along the r-direction
as D3D1DE(rh,ω), because

D3D1DE(krh;ω) = 2π
∫ ∞

0
D3D1DE(rh;ω)J0(krhrh)rhdrh. (8)

The form of data in (kri;ω) domain (equation (7)) contains
the Dirac delta functions in cylindrical coordinates, which is
equivalent to δ (kxg−kxs)δ (kyg−kys) in Cartesian coordinates.
Similar to the 2-D case, b1 back to depth domain is,

b1(~kg,~ks,z) = b3D1DE
1 (krg,z)(2π)2 δ (krg− krs)δ (φg−φs)

krg
,

(9)
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which is a 3-D un-collapsed Stolt migration. Substitute this
term into the full 3-D ISS internal multiple attenuation algo-
rithm in equation (1) with arranging the integral variable from
dkxdky to krdkrdφ . The lateral integrals

∫∫∫∫
kr1dkr1dφ1

kr2dkr2dφ2 can be evaluated due to the Dirac delta functions,
as above. The reduced form of the 3-D algorithm is

b3D1DE
3 (krh;ω) =∫ +∞

−∞
dz1b3D1DE

1 (krh,z1)ei2qz1

∫ z1−ε

−∞
dz2b3D1DE

1 (krh,z2)e−i2qz2

×
∫ +∞

z2+ε
dz3b3D1DE

1 (krh,z3)ei2qz3 , (10)

where krh = krg = krs (evaluated by Dirac delta functions), ver-

tical wavenumber q = sgn(ω)
√

(ω/c0)2− k2
rh and εg = εs (re-

ceivers and sources are located at the same depth ). Equation
(10) has the same form as the reduced 2-D internal multiple
attenuator (equation (5)) for 1-D subsurface in wavenumber-
frequency domain.

b3D1DE
3 (krh;ω) needs to be transformed back to the space do-

main by an inverse Hankel transform (derived from two dimen-
sion Fourier transform due to the independence of the azimuth
angle), instead of an inverse Fourier transform. The internal
multiple prediction D3D1DE

3 (rh;ω) can be obtained by using,

D3D1DE
3 (rh;ω) =

1
2π

∫ ∞

0
J0(krh · rh)

b3D1DE
3 (krh;ω)
−2iqs

krhdkrh.

(11)
We can rewrite the integral above using Bessel functions of the
third kind (Hankel function) H+

0 as,

D3D1DE
3 (rh;ω)=

1
4π

∫ +∞

−∞
H+

0 (krh ·rh)
b3D1DE

3 (krh;ω)
−2iqs

krhdkrh,

(12)

where q = sgn(ω)
√

(ω/c0)2− k2
rh. Considering the high com-

putational costs in this transform, we can use the approximate
asymptotic Hankel function to improve the efficiency. Then
the asymptotic Hankel transform is,

D3D1DE
3 (rh;ω)=

1
2π

∫ +∞

−∞

√
krh

i2πrh

b3D1DE
3 (krh;ω)
−2iqs

eikrhrh dkrh.

(13)
In a specified acquisition geometry that sources and receivers
are on the same streamer in 3-D survey, we can make r along
any angle in x-y plane, including r = x. The equation (10)
combining with equation (11) or (13) form the ISS internal
multiple attenuator assuming a 3-D point source for 1-D sub-
surface.

NUMERICAL RESULTS

The synthetic 3-D source data are generated based on a 1-
D acoustic layered model in Figure 1 using a broad band-
width. Since the data set is generated in (krh,q) domain by
reflectivity method, we assume that the data is transformed
from space-time domain to wavenumber-frequency domain by
space Fourier-Bessel transform (Hankel transform) and time

Fourier transform. The dataset is one pre-stack shot record
(see Figure 2 (a)) without free-surface multiple or ghost, which
satisfies the data requirements of both the ISS internal multi-
ple attenuation algorithm assuming a 2-D line source (equation
(5),(6)) and a 3-D point source (equation (10), (11) or (13)).

The comparisons between the original data, the 2-D line source
prediction and the 3-D point source predictions are shown in
four shot gather plots (see Figure 2). The original 3-D source
data from a 1-D earth is shown in Figure 2 (a), which con-
tains two primaries and one internal multiple events. Figure
2 (c) presents the internal multiple prediction assuming a 2-D
line source, in which the tail spread (a non-spherical wave) is
due to the impulse signature in a 2-D Green’s function. Both
Figure 2 (b) and (d) provides the predictions assuming a 3-D
point source. The difference is that the result in (d) employs
an asymptotic Bessel function (equation (13)) in order to trans-
form the prediction back to space domain, instead of doing a
Hankel transform (equation (11)) in the prediction shown in
(b). The reason is because the efficiency of a 3-D point source
prediction is the same as a 2-D line source prediction when an
asymptotic Bessel function is used.

All the predictions here produce an accurate time of the in-
ternal multiple, but different wavelet shape (Figure 2 (c)) or
amplitude (Figure 2 (b) (c) (d)) from the original internal mul-
tiple. In a further step, we explore the effectiveness of differ-
ent predictions by comparing results in near-offset (Figure 3
(a) (b), trace 2) and far-offset (Figure 3 (c) (d), trace 60).

Figure 3 (a) and (c) demonstrate that the 2-D line source pre-
diction (blue line) can generate a deviated wavelet and a much
larger amplitude than original internal multiple (red line). In
this case, direct subtracting the prediction from the data can
produce a larger multiple event in the de-multipled result, which
is harmful to the subsequent processing. Meanwhile, the 3-D
source predictions (black line, green line) always will be an
attenuator as expected, for both near- and far- offset (smaller
amplitude compared to original internal multiple (red line)).

Figure 1: Acoustic model used to generate synthetic 3-D point
source data.

Figure 3 (b) and (d) presents the difference between the origi-
nal data (red line) and the 3-D source predictions on near- and
far-offset traces, respectively. The wiggle plots (corresponding
to the time slot in red box in Figure 3 (a) and (c) ) are shown in
a larger scale. The results demonstrate that the predictions as-
suming a 3-D source are always attenuators, which is the char-
acteristic of the ISS internal multiple attenuation algorithm.
For a near-offset trace (see Figure 3 (b)), the prediction using
an asymptotic Bessel (green line), which is a far-field approx-
imation, is not as effective as the prediction retaining Hankel
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Figure 2: (a) One shot gather of a 3-D source-1-D earth
data; (b) ISS internal multiple prediction assuming a 3-D point
source; (c) ISS internal multiple prediction assuming a 2-D
line source; (d) ISS internal multiple prediction assuming a 3-
D point source using an asymptotic Bessel function.

transform in it (black line). Nevertheless, for the far-offset
trace (see Figure 3 (d)) the amplitudes of these two predictions
tend to be the same. Please notice that when the asymptotic
Bessel function is applied to a 3-D point source attenuator for
1-D subsurface, the computational cost of it can be reduced to
the same as the cost of a 1.5-D line source attenuator, which
can finish its prediction in the order of seconds for this small
size experimental data.

CONCLUSION

In this paper, a reduced and modified 3-D source ISS inter-
nal multiple attenuator has been proposed for a 1-D subsur-
face, which enhances the effectiveness of predicting the shape
and amplitude of the internal multiples. Numerical tests and
analysis illustrate that with the data generated by a 3-D point
source it is important to incorporate that source dimension in
the ISS internal multiple attenuation algorithm. That incorpo-
ration will always reduce the internal multiple. Using an inter-
nal multiple predictor that assumes a 2-D line source on data
from a 3-D point source can make the multiple larger ampli-
tude. Therefore, it is essential to incorporate a 3-D point source
in internal multiple algorithms when the subsurface is 1-D, 2-
D or 3-D. Ignoring the 3-D source inclusion on real data can
result in an effective and useful algorithm making the multiple
problem worse. That was an interesting and surprising result
for the important role that a 3-D source accommodation is for
internal multiple prediction effectiveness.
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(a) Wiggle comparison of trace 2

(b) Plot the slot in the red box in (a) without the 2-D source prediction
in a larger scale

(c) Wiggle comparison of trace 60

(d) Plot the slot in the red box in (c) without the 2-D source prediction
in a larger scale

Figure 3: Wiggle comparison of trace 2 (a) (b) and trace 60 (c)
(d); Red line: original 3-D source-1-D earth data; Blue line:
ISS internal multiple prediction assuming a 2-D line source;
Black line: ISS internal multiple prediction assuming a 3-D
point source; Green line: ISS internal multiple prediction as-
suming a 3-D point source using an asymptotic Bessel func-
tion.
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Araújo, F. V., A. Weglein, P. M. Carvalho, and R. Stolt, 1994,
Inverse scattering series for multiple attenuation: An exam-
ple with surface and internal multiples: 64th Annual Inter-
national Meeting, SEG, Expanded Abstracts, 1039–1041.

Carvalho, P. M., 1992, Free-surface multiple reflection elimi-
nation method based on nonlinear inversion of seismic data:
PhD thesis, Universidade Federal da Bahia.

Duquet, B., A. Chavanne, P. Poupion, M. Rowlands, B.
Santos-Luis, and J. M. Ugolini, 2013, Seismic processing
and imaging in central north sea area - recents advances
and remaining challenges: 75th EAGE conference.

Ferreira, A., 2011, Internal multiple removal in offshore off-
shore brazil seismic data using the inverse scattering series:
Master Thesis, University of Houston.

Fu, Q., Y. Luo, P. G. Kelamis, G. Huo, G.and Sindi, S.-Y. Hsu,
and A. B. Weglein, 2010, The inverse scattering series ap-
proach towards the elimination of land internal multiples:
80th Annual International Meeting, SEG, Expanded Ab-
stracts, 3456–3461.

Fu, Q., and A. B. Weglein, 2014, Internal multiple attenuation
on encana data: 84th Annual International Meeting, SEG,
Expanded Abstracts, 4118–4123.

Liang, H., C. Ma, and A. B. Weglein, 2013, General theory for
accommodating primaries and multiples in internal multi-
ple algorithm: Analysis and numerical tests: 83th Annual
International Meeting, SEG, Expanded Abstracts, 4178–
4183.

Luo, Y., P. G. Kelamis, Q. Fu, G. Huo, G. Sindi, S.-Y. Hsu, and
A. B. Weglein, 2011, Elimination of land internal multiple
based on the inverse scattering series: The Leading Edge,
30, 884–889.

Ma, C., and A. B. Weglein, 2014, Including higher-order in-
verse scattering series terms to address a serious shortcom-
ing/problem of the nternal-multiple attenuator: Exemplify-
ing the problem and its resolution: 84th Annual Interna-
tional Meeting, SEG, Expanded Abstracts, 4124–4129.

Matson, K., and A. B. Weglein, 1996, Removal of elastic in-
terface multiples from land and ocean bottom data using in-
verse scattering: 66th Annual International Meeting, SEG,
Expanded Abstracts., 1526–1529.

Terenghi, P., S.-Y. Hsu, A. B. Weglein, and X. Li, 2011, Ex-
emplifying the specific properties of the inverse scattering
series internal-multiple attenuation method that reside be-
hind its capability for complex onshore and marine multi-
ples: The Leading Edge, 30, 876–882.
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Incorporating a 3-D point source in the inverse scattering series
internal multiple attenuation algorithm for a 2-D subsurface

Xinglu Lin, and Arthur B. Weglein

Abstract

In this report, the inverse-scattering-series (ISS) internal-multiple-attenuation algorithm
(Araújo et al., 1994; Weglein et al., 1997, 2003) for a 3-D point source and a 3-D subsurface
is modified/reduced for the data coming from a 2-D subsurface in this report. The modified
3-D ISS internal-multiple-attenuation algorithm for a 2-D subsurface presents the same data re-
quirement and computational cost as a 2-D ISS internal multiple attenuation algorithm demands
(assuming a 2-D line source and a 2-D subsurface). Unlike the 2-D source-2-D earth algorithm,
the modified/reduced algorithm preserves the effectiveness of predicting the amplitude and the
shape of internal multiples for a 3-D point source data coming from 2-D subsurface.

1 Introduction

The ISS algorithm provides multidimensional procedures (Carvalho, 1992; Araújo et al., 1994;
Weglein et al., 1997, 2003), which has its unique strengths in that it does not require subsurface
information and is even independent of the earth model-type. Among these multidimensional meth-
ods, the ISS internal-multiple-attenuation algorithm (Araújo et al., 1994; Weglein et al., 1997) can
predict the accurate time and approximate amplitude of internal multiples (that are generated by
the reflectors below the free-surface). The data requirement of this method depends on how many
dimensions are assumed to be spatially variable in the subsurface. For a 3-D subsurface (assum-
ing 3-D point sources and 3-D point receivers), the algorithm needs the sources everywhere on the
measurement surface and each source needs the receivers everywhere on the measurement surface.
This need for a complete areal data set and hence high computational capability are challenges.
Therefore, people choose the 2-D algorithm (which assumes a 2-D line source) to process the 3-D
data coming from an approximately 2-D subsurface with inadequate data in the crossline direction.

This report assumes that earth properties vary only in two dimensions (2-D earth/subsurface)
but the sources, receivers and wave propagation are in 3-dimensions. These assumptions are named
as 2.5-D problems in history (Deregowski and Brown, 1983; Bleistein, 1986). The 2.5-D prob-
lems have been presented and discussed by various authors in different contexts, including forward
modeling (Deregowski and Brown, 1983; Liner, 1991; Williamson and Pratt, 1995; Miksat et al.,
2008), migration (Esmersoy and Oristaglio, 1988) and inversion (Clayton and Stolt, 1981; Stolt and
Benson, 1986; Bleistein, 1987). In contast to the above mentioned projects, this paper focuses on
a 2.5-D ISS internal multiple attenuation algorithm which can be reduced from a complete 3-D
algorithm assuming 3-D sources and receivers.

The complete 3-D ISS internal-multiple-attenuation algorithm was developed by Araújo et al.
(1994); Weglein et al. (1997). For a 2-D subsurface, the 3-D ISS internal multiple attenuation
algorithm can be reduced in both data requirements and computational cost. It preserves the property
of the three-dimensional sources and receivers. This incorporation avoids the serious degradation of
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applying a 2-D ISS internal multiple attenuation algorithm, which assumes a 2-D line sources and
receivers, on 3-D source data.

2 3-D and 2-D ISS internal-multiple algorithm

The inverse-scattering method for internal-multiple prediction provides a comprehensive theory
without requiring any subsurface information. The ISS internal multiple attenuator was originally
proposed by Araújo et al. (1994) and Weglein et al. (1997). The preparation of the 3-D ISS internal
multiple prediction starts from data D(xg, yg, εg, xs, ys, εs, t), where (xg, yg, εg) and (xs, ys, εs)
are the receiver- and source-location, respectively. For the fixed depth of sources and receivers
(omit εs, εg), the b1 term is defined by the data in wavenumber-frequency domain as b1(~kg,~ks, qg +

qs) = −2iqsD(~kg,~ks;ω), where the vertical wavenumber is qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yi ,

i ∈ {g, s} and ~kg = (kxg , kyg), ~ks = (kxs , kys). The b1 term can be Fourier transformed to the
depth domain as ,

b1(~kg,~ks, z) =
∫

(−2iqs)D(~kg,~ks;ω)e−i(qg+qs)zdkz, (1)

where kz = qg + qs and qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yi . b1(~kg,~ks, z) corresponds to an un-
collapsed Stolt migration. The ISS internal multiple attenuation algorithm in 3-D is

b3D3 (kxg , kyg , kxs , kys ;ω)

=
1

(2π)4

∫∫ ∞
−∞

dkx1dkx2

∫∫ ∞
−∞

dky1dky2e
−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞
dz1b1(kxg , kyg , kx1 , ky1 , z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(kx1 , ky1 , kx2 , ky2 , z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε
dz3b1(kx2 , ky2 , kxs , kys , z2)ei(q2+qs)z3 , (2)

where qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yi , i ∈ {g, 1, 2, s}, and b3D3 (kxg , kyg , kxs , kys ;ω) is a
3-D internal-multiple-attenuator in wavenumber-frequency domain. The 3-D algorithm in equa-
tion (2) assumes that the acquisition applies 3-D sources and 3-D receivers for a 3-D subsurface.
D(kxg , kyg , kx1 , ky1 ;ω) indicates that the algorithm needs the sources everywhere on the measure-
ment surface and each source needs the receivers everywhere on the measurement surface. Inverse
Fourier transforming b3D3 (kxg , kyg , kxs , kys ;ω)/(−2iqs) can produce the 3-D space-time attenuator,
which predicts the internal multiple accurately in time and approximately in amplitude. In addition,
(b1+b3)/(−2iqs) can generate the result after multiple removal when it is returned to the space-time
domain.

Similarly, a set of 2-D dataD(xg, xs, t) can be transformed into wavenumber-frequency domain
as D(kg, ks;ω), which defines the 2-D b1(kg, ks, qg + qs) = −2iqsD(kg, ks;ω). The uncollapsed
Stolt migration can be obtained as,

b1(kg, ks, z) =
∫

(−2iqs)D(kg, ks;ω)e−i(qg+qs)zdkz, (3)
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where kz = qg + qs and qi = sgn(ω)
√

(ω/c0)2 − k2
i . The 2-D ISS internal-multiple-attenuation

algorithm is

b2D3 (kg, ks;ω)

=
1

(2π)2

∫∫
dk1dk2e

−iq1(εg−εs)eiq2(εg−εs)

×
∫ +∞

−∞
dz1b1(kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε
dz3b1(k2, ks, z2)ei(q2+qs)z3 , (4)

where the vertical wavenumber is qi = sgn(ω)
√

(ω/c0)2 − k2
i , i ∈ {g, 1, 2, s}, b1(kg, ks, z) is an

un-collapsed Stolt migration of 2-D data (transform b1(kg, ks, qg + qs) back to depth domain) , and
b2D3 (kg, ks;ω) is a 2-D internal-multiple attenuator in wavenumber-frequency domain. The 2-D at-
tenuator in space-time domain can be obtained by inverse Fourier transforming b2D3 (kg, ks;ω)/(−2iqs).
The original 2-D ISS internal-multiple attenuation algorithm in equation (4) (assuming 2-D line
sources and 2-D line receivers) requires a collection of shot records on a line.

The following sections will discuss the reduced 3-D algorithm for the data from a 2-D sub-
surface. For convenience, the superscript 2DE represents the 2-D earth assumption for different
sources (for example, 3-D point source 2-D earth: 3D2DE).

3 Reduce the source-side data requirement by applying cross-line symmetry

Data can be rearranged from D(xg, yg;xs, ys, t) to D(xg, xs, yh, ym, t), where yh = yg− ys (offset
along y-direction) and ym = yg+ys (double the midpoint location along y-direction). Assuming the
earth property is invariant along the y direction, then the dependence of data can be reduced from
D(xg, xs, yh, ym, t) to D3D2DE(xg, xs, yh, t), which is independent of ym. The Fourier transform
over the 3-D data for a 2-D subsurface, which is needed for the algorithm, can be shown as,

D(kxg , kyg , kxs , kys ;ω)

=
∫∫

dxgdxs

∫∫
dygdyse

i(kxgxg+kygyg)e−i(kxsxs+kysys)
∫
dteiωtD3D2DE(xg, xs, yh, t)

=
1
2

∫
eikyhyhD3D2DE(kxg , kxs , yh;ω)dyh

∫
eikymymdym

= D3D2DE(kxg , kxs , kyh ;ω)(2π)δ(kyg − kys), (5)

where kyh = kyg+kys
2 and km = kyg−kys

2 . The data is independent of ym and can come out of the
integral. Consequently, the Fourier transform integral over ym can produce a Dirac delta function
in kym . b1 is defined as b1(kxg , kxs , kyh , kym , qg + qs) = −2iqsD(kxg , kxs , kyh , kym ;ω). The
un-collapsed Stolt migration b1 can be expressed as,

b1(kxg , kyg , kxs , kys ; qg + qs) = −2iqsD(kxg , kyg , kxs , kys ;ω)

= −2iqsD3D2DE(kxg , kxs , kyh ;ω)(2π)δ(kyg − kys)
= b3D2DE

1 (kxg , kxs , kyh ; qg + qs)(2π)δ(kyg − kys), (6)
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where qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yi . The symmetry factor in equation 6 is independent of
kz = qg + qs. In the following step, b1 needs to be transformed back to depth domain:

b3D2DE
1 (kxg , kxs , kyg , kys , z) = b3D2DE

1 (kxg , kxs , kyh , z)(2π)δ(kyg − kys), (7)

which is an un-collapsed Stolt migration. When the structure from 2-D earth symmetry in equa-
tion (7) is applied into current 3-D ISS internal multiple attenuation algorithm in equation (2), the
algorithm becomes,

b3D2DE
3 (kxg , kxs , kyg ;ω)δ(kyg − kys)

=
1

(2π)2

∫∫ ∞
−∞

dkx1dky1

∫∫ ∞
−∞

dkx2dky2

×
∫ +∞

−∞
dz1b

3D2DE
1 (kxg , kx1 , kyg , z1)ei(qg+q1)z1δ(kyg − ky1)

×
∫ z1−ε

−∞
dz2b

3D2DE
1 (kx1 , kx2 , ky1 , z2)e−i(q1+q2)z2δ(ky1 − ky2)

×
∫ +∞

z2+ε
dz3b

3D2DE
1 (kx2 , kxs , ky2 , z3)ei(q2+qs)z3δ(ky2 − kys). (8)

The lateral integrals
∫∫

dky1dky2 can be evaluated due to the Dirac delta functions and then the
algorithm can be reduced to,

b3D2DE
3 (kxg , kxs , kyh ;ω)

=
1

(2π)2

∫ ∞
−∞

dkx1

∫ ∞
−∞

dkx2

∫ +∞

−∞
dz1b

3D2DE
1 (kxg , kx1 , kyh , z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b

3D2DE
1 (kx1 , kx2 , kyh , z2)e−i(q1+q2)z2

×
∫ +∞

z2+ε
dz3b

3D2DE
1 (kx2 , kxs , kyh , z3)ei(q2+qs)z3 , (9)

where kyh = kyg = kys (evaluated by integrating over kyg on both sides), the vertical wavenumber

qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yh
and εg = εs (receivers and sources are located at the same

depth).

In contrast to the complete 3-D ISS internal multiple attenuator, which needs an areal coverage
of receivers for each shot gather and also areal coverage of source locations, the reduced algorithm
for a 2-D subsurface requires an areal coverage of receivers for each pre-stack shot gather and also
multiple sources along the inline direction (x-direction here).

3.1 Test by further reducing the 3-D source 2-D earth ISS internal-multiple-attenuation
algorithm for a 1-D earth

This section will test the validity of reduced 3-D source 2-D earth ISS internal-multiple-attenuation
algorithm (equation (9)) by algebraically reducing it for a 1-D earth.
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The algorithm starts from preparing data in the (kxg , kxs , kyh ;ω) domain. The algorithm in
equation (9) requires the data,

D3D2DE(kxg , kxs , kyh ;ω) =
∫∫

dxgdxse
i(kxgxg−kxsxs)

∫
dyhe

ikyhyhD3D2DE(xg, xs, yh;ω),

(10)
which has been shown in equation (5). When we assume that the earth varies only in the z-direction,

the dependence of data turns to be D(
√
x2
h + y2

h;ω). Fourier transform the 1-D earth data and
change the variables from xg and xs to xh = xg − xs and xm = xg + xs,

D3D2DE(kxg , kxs , kyh ;ω) =
∫∫

dxgdxse
i(kxgxg−kxsxs)

∫
dyhe

ikyhyhD3D1DE(
√
x2
h + y2

h;ω)

=
1
2

∫
dxhe

ikxhxh

∫
dyhe

ikyhyhD3D1DE(
√
x2
h + y2

h;ω)
∫
dxme

ikxmxm

=
1
2

∫
dxhe

ikxhxh

∫
dyhe

ikyhyhD3D1DE(
√
x2
h + y2

h;ω)2πδ(kxm), (11)

where kxh = kxg+kxs
2 and kxm = kxg−kxs

2 . Since the data is independent of xm, the integral over
xm will produce a Dirac delta function. Here we introduce the polar coordinates as (rh, θh) for

(xh, yh) and (krh , φh) for (kxh , kyh), so we can write rh =
√
x2
h + y2

h and krh =
√
k2
xh

+ k2
yh

.
Rearrange the formula in polar coordinates,

D3D2DE(kxg , kxs , kyh ;ω) =
1
2

∫ ∞
0

rhdrh

∫ 2π

0
dθeikrhrhcosθD3D1DE(rh;ω)2πδ(kxm), (12)

where θ = θh − φh. Because the data depends only on rh and ω, the integral over angular variable
θ creates a Bessel function of the first kind J0(krhrh), which makes a Hankel transform

D3D2DE(kxg , kxs , kyh ;ω) =
2πδ(kxm)

2

∫ ∞
0

J0(krhrh)D3D1DE(rh;ω)rhdrh

= 2πδ(kxg − kxs)D3D1DE(krh ;ω). (13)

The uncollapsed Stolt migration can be expressed as b3D2DE
1 (kxg , kxs , kyh ; z) = 2πδ(kxg−kxs)b3D1DE

1 (krh , z).
After substituting this expression into equation (9), the 3-D source 2-D earth ISS internal-multiple-
attenuation algorithm can be further simplified for a 1-D subsurface as,

b3D1DE
3 (krh ;ω)

=
∫ +∞

−∞
dz1b

3D1DE
1 (krh , z1)ei2qz1

×
∫ z1−ε

−∞
dz2b

3D1DE
1 (krh , z2)e−i2qz2

∫ +∞

z2+ε
dz3b

3D1DE
1 (krh , z3)ei2qz3 , (14)

where q = sgn(ω)
√

ω2

c20
− k2

rh
and krg = krs = krh since kxg = kxs = kxh and kyg = kys = kyh .

The reduced algorithm for a 1-D subsurface agrees with the result we obtained in Lin and Weglein
(2014). The 3-D source 1-D subsurface ISS internal multiple attenuation algorithm has been tested
in the referenced report, which proves the validity of the 3-D source-2-D subsurface algorithm in
equation (9) in a special case of a 1-D subsurface.
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4 Reduce the receiver-side data requirement using the stationary-phase approxima-
tion

People choose the 2-D algorithm (which assumes a 2-D line source) to process 3-D data because
of missing crossline data and data processing efficiency. The 2-D recording acquisition (multiple
shot gathers along the inline direction) does not provide enough information to predict the internal
multiple in a 3-D algorithm. Even though we assume the earth varies only in (x, z), the areal
coverage of receivers for each source and all the sources on one inline direction are required by
the reduced form (equation (9)). That is because the algorithm is initially derived and calculated in
the (kyg , kys ;ω) domain. The reduced algorithm in section 3 shows kyg = kys = kyh . To obtain
each kyh (or kyg , kys), the Fourier transform needs all receivers on the measurement surface. If the
acquisitions are restricted to the central plane (yh = 0 in this report) assuming a 3-D point source,
the asymptotic method will be applied to evaluate the summation of the wavenumber spectra only
from the contribution of kyh = 0. The physics behind this approximation can be interpreted as no
out-of-plane wave arrivals in the 2.5-D data.

4.1 Asymptotic 3-D ISS internal-multiple-attenuation algorithm for a 2-D subsur-
face

The uncollapsed Stolt migration b3D2DE
1 (kxg , kxs , kyh , z) is related to the data,

b3D2DE
1 (kxg , kxs , kyh , z) =

1
2π

∫
(−2iqs)D(kxg , kxs , kyh ;ω)e−i(qg+qs)zdkz, (15)

where kz = qg + qs and qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yh
. The acquisition along yh = 0 can

provide only D(kxg , kxs , yh = 0;ω). Reverse the Fourier transform shown in equation (15) as,

D(kxg , kxs , kyh ;ω) =
1
−2iqs

∫
b3D2DE
1 (kxg , kxs , kyh , z)e

i(qg+qs)zdz. (16)

To fix the y-offset at yh = 0, the kyh needs to be inverse Fourier transformed back to the spatial
domain as,

D(kxg , kxs , yh;ω) =
1

2π

∫ ∫
1
−2iqs

b3D2DE
1 (kxg , kxs , kyh , z)e

i(qg+qs)ze−ikyhyhdzdkyh . (17)

The integration does not have a closed form solution, however, it involves all wavenumber along the
y-direction. Using the stationary phase approximation with respect to kyh , the integral/summation
over all the kyh spectrum can be replaced by the single contribution at k̂yh = 0 for yh = 0 (shown
in Appendix A), where the k̂yh represents the stationary point. Set yh = 0 in equation (17) and
approximate the integral

∫
dkyh , and then we obtain

D(kxg , kxs , yh = 0;ω) ≈
∫

e−i
π
4

−2iq̂s

√
1

2πz
q̂g q̂s
q̂g + q̂s

b3D2DE
1 (kxg , kxs , kyh = 0, z)ei(q̂g+q̂s)zdz,

(18)
where q̂i = sgn(ω)

√
(ω/c0)2 − k2

xi . A hat sign represents a variable that can be evaluated at a
stationary point. Rearrange the formula to calculate the uncollapsed Stolt migration at kyh = 0 as,

b3D2DE
1 (kxg , kxs , kyh = 0, z) ≈

√
i2πz

1
2π

∫
(−2iq̂s)

√
1
q̂g

+
1
q̂s
D(kxg , kxs , yh = 0;ω)e−i(q̂g+q̂s)zdk̂z,

(19)
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where k̂z = q̂g + q̂s and q̂i = sgn(ω)
√

(ω/c0)2 − k2
xi . Recall the 3-D source 2-D subsurface

ISS internal-multiple-attenuation algorithm which is reduced by crossline (y-direction) symmetry
in equation (9). If the wavenumber kyh is set to be zero, the equation turns to be,

b3D2DE
3 (kxg , kxs , kyh = 0;ω)

=
1

(2π)2

∫ ∞
−∞

dkx1

∫ ∞
−∞

dkx2

×
∫ +∞

−∞
dz1b

3D2DE
1 (kxg , kx1 , kyh = 0, z1)ei(q̂g+q̂1)z1

×
∫ z1−ε

−∞
dz2b

3D2DE
1 (kx1 , kx2 , kyh = 0, z2)e−i(q̂1+q̂2)z2

×
∫ +∞

z2+ε
dz3b

3D2DE
1 (kx2 , kxs , kyh = 0, z3)ei(q̂2+q̂s)z3 , (20)

where b3D2DE
1 (kxg , kxs , kyh = 0, z) can be calculated by equation (19). The internal-multiple

prediction result can be expressed by b3D2DE
3 (kxg , kxs , kyh ;ω) as,

D3D2DE
3 (.., yh, t) =

1
(2π)2

∫∫
b3D2DE
3 (.., kyh ;ω)

−2iqs
e−ikyhyhe−iωtdkyhdω, (21)

where qi = sgn(ω)
√

(ω/c0)2 − k2
xi − k2

yh
,D3 is the internal-multiple prediction in the (kxg , kxs , yh, t)

domain, and kxg , kxs are omitted for convenience. Applying the same stationary phase approxima-
tion strategy with respect to kyh (Appendix B),

D3D2DE
3 (kxg , kxs , yh = 0, t) ≈ 1

2π

∫ √ −iω
2πtc2

0

b3D2DE
3 (kxg , kxs , k̂yh = 0, ω)

−2iq̂s
e−iωtdω, (22)

where qi = sgn(ω)
√

(ω/c0)2 − k2
xi . The complete procedure of the ISS internal-multiple-attenuation

algorithm finishes at the prediction D3D2DE in the (xg, xs, yh, t) domain, which can be approxi-
mated by equation (22).

For a 2-D subsurface, the ISS internal-multiple attenuator assuming a 3-D point source can
be reduced, and it only requires multiple shot gathers on the inline direction (x-direction) where
sources and receivers are located at the yh = 0 plane. That input data requirement is the same as the
2-D line source ISS internal-multiple attenuator (equation (4)). The corrections have to be added to
preserve the 3-D point source assumption, as shown in equation (19), (20) and (22).

The next section will discuss how
√−iω works as an asymptotic filter for a homogeneous

acoustic medium, which is also a conventional filter to transform 2-D data to 3-D data.

4.2 Conventional asymptotic filters

The yh = 0 to kyh = 0 conversion filters (also understood as point-source to line-source conversion
filters) have been presented by various authors in different contexts (Deregowski and Brown, 1983;
Bleistein, 1986; Williamson and Pratt, 1995; Miksat et al., 2008). The simplest case is the difference
between 2-D and 3-D Green’s functions in a homogeneous acoustic medium. The frequency-domain
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solution (Fourier transformed Green’s function) to the acoustic wave equation assuming a 3-D point
source can be expressed as (Aki and Richards, 2002)

G3D(r;ω) =
1

4πr
e
iωr
c0 , (23)

where ω is the angular frequency, r =
√
x2
h + y2

h + z2
h and c0 is the acoustic wave speed. The 2-D

frequency-domain Green’s function solution for an acoustic homogeneous full space is given by
Abramowitz and Stegun (1965):

G2D(r′;ω) =
i

4
H

(1)
0 (

ωr′

c0
), (24)

where H(1)
0 is the Hankel function of the first kind and zeroth order and r′ is the distance between

source and receiver in 2-D (r′ =
√
x2
h + z2

h). Using the large argument approximation of the Hankel
function (Morse and Feshbach, 1953), one obtains the asymptotic 2-D acoustic Green’s function

G2D(r′;ω) ≈
√

c0

8π|ω|r′ e
i(ωr

′
c0

+π
4

)
. (25)

If we let yh = 0 in equation (23), r reduces to r′ =
√
x2
h + z2

h. A simple derivation of the filter
function is based on forming the ratio of the acoustic 3-D and the asymptotic 2-D Green’s function
as,

G2D(r′;ω) = G3D(r′;ω)

√
i2πσ
|ω| , (26)

where σ = c0r
′ for an acoustic homogeneous medium. For a general heterogeneous medium, σ is

given as the line integral of the velocity with respect to the arc length s of a ray trajectory (Miksat
et al., 2008), σ =

∫
c(s)ds, where s is the arc length defined in a ray tracing method.

4.3 Comparisons

The correction filter in equation (19) can be compared to the conventional filter that transfers 3-
D source data to 2-D line source data, which is in equation(26). The difference is that formula
(19) corrects the source dimension in the image domain, instead of the temporal frequency domain
(
√
r ∼ √z,

√
1

|ω|/c0 ∼
√
| 1
qg

+ 1
qs
|). In this step, the correction filter

√
z modifies the geomet-

ric spreading in wave propagation from ∼ 1
r (3-D) to ∼ 1√

r
(2-D) in the depth domain. Also,√

i| 1
qg

+ 1
qs
| adds a frequency scale and a π

4 phase shift on the 3-D data.

The filter we obtained in equation (22) is identical with the conversion filter from kyh = 0 (2-D)
to yh = 0 (one 3-D plane) for an acoustic homogeneous medium in equation (26).

For a 2-D subsurface, the 3-D ISS internal-multiple attenuator can be reduced and performed as
shown in equation (19), (20) and (22). The successive steps can be interpreted as three procedures.
Firstly, the 3-D point source data can be migrated and corrected to a 2-D line source uncollapsed
migration result ((19)). The second step applies the b1(kyh = 0;ω) to a reduced 3-D ISS internal
multiple attenuator, where the wavenumber kyh has been set to be zero. In fact, the attenuator is
degraded to a 2-D line source ISS internal-multiple attenuator when kyh = 0, because no wave
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propagation out of the yh = 0 plane provides a cylindrical wave front as in 2-D propagation. Fi-
nally, equation (22) produces the prediction result in the spatial-time domain by inverse Fourier
transforming the corrected b3(kyh ;ω)/(−2iq̂s). The correction turns to be a filter that transfers the
prediction back to a 3-D source data.

5 Conclusions and future work

In this paper, we reduced the 3-D ISS internal-multiple-attenuation algorithm, which assumes a
3-D point source, for a 2-D subsurface. The earth property is assumed to be changing only in 2-
dimensions (e.g. xz-plane). We provided two kinds of reductions from the complete 3-D source
algorithm. The first reduction only uses the spatial symmetry along the cross-line direction (defined
as the y-direction here). In this step, the reduced algorithm requires an areal coverage of receivers
for each pre-stack shot gather and also multiple sources along the inline direction (x-direction here).
In contrast to a complete 3-D algorithm, the need for sources decreases from being on a full area
to being on one line. The second reduction generates an asymptotic 3-D ISS internal-multiple-
attenuation algorithm by applying stationary phase approximations. In this part, the data collection
is constrained to the yh = 0 plane and the prediction algorithm assumes a far-field record. The
demand of data can be further reduced to be multiple pre-stack shot gathers on one single line. The
reduced ISS internal multiple attenuator kernel has the same form/structure as a 2-D line source
ISS attenuator. However, the corrections on the input data and output prediction can preserve the
effectiveness of predicting the amplitude and the shape of internal multiples for a 3-D point source
data coming from 2-D subsurface.

The numerical tests of the reduced 3-D ISS internal multiple attenuation algorithm for a 2-D
subsurface will be shown to the sponsors during the annual meeting.

6 Acknowledgements

We are grateful to all M-OSRP sponsors for their encouragement and support. All members in the
M-OSRP group are thanked for their valuable discussions and shared information.



314

Appendix A

Stationary-phase approximation to solve D(.., yh = 0; ω)

Equation (17) cannot be solved as a closed form,

D(kxg , kxs , yh;ω) =
1

2π

∫ ∫
1
−2iqs

b3D2DE
1 (kxg , kxs , kyh , z)e

i(qg+qs)ze−ikyhyhdzdkyh , (A-1)

where qi = sgn(ω)
√

(ω/c0)2 − kxi − kyh . If we set a fixed plane at yh = 0, the formula can be
expressed as,

D(kxg , kxs , yh = 0;ω) =
1

2π

∫ ∫
1
−2iqs

b3D2DE
1 (kxg , kxs , kyh , z)e

i(qg+qs)zdzdkyh (A-2)

The integral with respect to dkyh can be approximated by a stationary phase assumption, which
assumes a far-field recording and a smooth b3D2DE

1 with respect to kyh . In a far-field recording, the
wave can be considered as propagating as a ray. The oscillating phase can be expressed as,

f(kyh) = (qg + qs)z = sgn(ω)
(√

ω

c0

2 − k2
xg − k2

yh
+
√
ω

c0

2 − k2
xs − k2

yh

)
z. (A-3)

The saddle point can be solved by finding the root of the equation,

f ′(kyh) = sgn(ω)
( −kyh√

ω
c0

2 − k2
xg − k2

yh

+
−kyh√

ω
c0

2 − k2
xs − k2

yh

)
z = 0. (A-4)

Following the equation, the exponential can be stationary at kyh = 0. The second derivative of
equation (22) at k̂yh = 0 can be solved,

f ′′(k̂yh = 0) = sgn(ω)
( −1√

ω
c0

2 − k2
xg − k2

yh

+
−1√

ω
c0

2 − k2
xs − k2

yh

+
−k2

yh

( ωc0
2 − k2

xg − k2
yh

)3/2
+

−k2
yh

( ωc0
2 − k2

xs − k2
yh

)3/2

)
z|k̂yh=0

= sgn(ω)
( −1√

ω
c0

2 − k2
xg

+
−1√

ω
c0

2 − k2
xs

)
z. (A-5)

If z > 0 and ω > 0 are assumed in equation (24), then f ′′(kyh = 0) < 0, which defines the factor
e−i

π
4 . The integral formula in (21) can be approximated as,

D(kxg , kxs , yh = 0;ω) ≈
∫

e−i
π
4

−2iq̂s

√
1

2πz
q̂g q̂s
q̂g + q̂s

b3D2DE
1 (kxg , kxs , kyh = 0, z)ei(q̂g+q̂s)zdz,

(A-6)
where q̂i = sgn(ω)

√
(ω/c0)2 − k2

xi . Similarly, if z > 0 and ω < 0, the f ′′(kyh = 0) switches
the sign and opening the absolute value can provide the same formula as shown in equation (A-6).
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Inverse Fourier transforming to obtain b3D2DE
1 gives,

b3D2DE
1 (kxg , kxs , kyh = 0, z) ≈

√
i2πz

1
2π

∫
(−2iq̂s)

√
1
q̂g

+
1
q̂s
D(kxg , kxs , yh = 0;ω)e−i(q̂g+q̂s)zdk̂z,

(A-7)
where k̂z = q̂g + q̂s, q̂g = sgn(ω)

√
(ω/c0)2 − k2

xg and q̂s = sgn(ω)
√

(ω/c0)2 − k2
xs
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Appendix B

Stationary phase approximation to solve D3(.., yh = 0; ω)

In a general 3-D prediction, the internal multiple attenuator in D3(.., yh = 0;ω) can be obtained as,

D3D2DE
3 (.., yh, t) =

1
(2π)2

∫∫
b3D2DE
3 (.., kyh ;ω)

−2iqs
e−ikyhyhe−iωtdkyhdω, (B-1)

where the omitted variables are kxg and kxs and qi =
√

(ω/c0)2 − kxi − kyh . If we set the fixed
plane at yh = 0, the formula can be expressed as,

D3D2DE
3 (.., yh = 0, t) =

1
(2π)2

∫∫
b3D2DE
3 (.., kyh ;ω)

−2iqs
e−iωtdkyhdω, (B-2)

The variable ω can be changed to kz = qg + qs as shown in Stolt and Benson (1986) (chapter 3,
section 5), which provides the Jacobian term,

dω =
c2

0

ω

qgqs
qg + qs

dkz (B-3)

Formula (29) turns out to be,

D3D2DE
3 (.., yh = 0, t) =

1
(2π)2

∫∫
b3D2DE
3 (.., kyh ;ω)

−2iqs
e−iω(..,kyh ,kz)t c

2
0

ω

qgqs
qg + qs

dkyhdkz, (B-4)

where for positive frequency (negative frequency can produce the same result at the last step)

kz =

√
ω

c2
0

2 − k2
xg − k2

yh
+

√
ω

c2
0

2 − k2
xs − k2

yh
. (B-5)

The integral with respect to dkyh can be approximated by a stationary phase assumption, which
assumes a far-field recording and a smooth integral kernel with respect to kyh . The saddle point can
be solved by finding the root of the equation,

f ′(kyh) = −ω′(kyh)

= −c
2
0

ω
kyh = 0. (B-6)

In equation (39), the exponential can be stationary at kyh = 0. The second derivative of of equation
(22) at k̂yh = 0 can be solved,

f ′′(k̂yh = 0) = −c
2
0

ω
. (B-7)

Then f ′′(kyh = 0) < 0 for ω > 0, which defines the factor e−i
π
4 . The integral formula in (28) can

be approximated as,

D3D2DE
3 (kxg , kxs , yh = 0, t) ≈ 1

2π

∫ √−i|ω|
2πtc2

0

b3D2DE
3 (kxg , kxs , k̂yh = 0, ω̂)

−2iq̂s
e−iω̂t

c2
0

ω

q̂g q̂s
q̂g + q̂s

dk̂z,

(B-8)
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where q̂i = sgn(ω)
√

(ω/c0)2 − k2
xi . Change the integral variable back to dω,

D3D2DE
3 (kxg , kxs , yh = 0, t) ≈ 1

2π

∫ √ −iω
2πtc2

0

b3D2DE
3 (kxg , kxs , k̂yh = 0, ω)

−2iq̂s
e−iωtdω, (B-9)

where q̂i = sgn(ω)
√

(ω/c0)2 − k2
xi .

If ω < 0, the second derivative f ′′(kyh = 0) = − c20
ω turns out to be a positive number, which

provides the factor ei
π
4 . The switched sign on i gives,

D3D2DE
3 (kxg , kxs , yh = 0, t) ≈ 1

2π

∫ √
i|ω|

2πtc2
0

b3D2DE
3 (kxg , kxs , k̂yh = 0, ω)

−2iq̂s
e−iωtdω, (B-10)

Since |ω| = −ω, the formula remains,

D3D2DE
3 (kxg , kxs , yh = 0, t) ≈ 1

2π

∫ √ −iω
2πtc2

0

b3D2DE
3 (kxg , kxs , k̂yh = 0, ω)

−2iq̂s
e−iωtdω, (B-11)

where q̂i = sgn(ω)
√

(ω/c0)2 − k2
xi .
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A new Inverse Scattering Series (ISS) internal-multiple-attenuation
algorithm that predicts the accurate time and approximate amplitude

of the first-order internal multiples and addresses spurious events:
Analysis and Tests in 2D

Chao Ma and Arthur B. Weglein

Abstract

The ISS internal-multiple-attenuation algorithm assumes that the free-surface-multiple events
have been removed from the input of this algorithm, and that the input consists of only primary
events and internal-multiple events. This algorithm selects three events by a “longer-shorter-
longer” relationship in the vertical-traveltime domain, and the primaries selected in that proce-
dure predict the accurate time and approximate amplitude of all first-order internal multiples,
without requiring any subsurface information (Weglein et al., 2003). Because the primaries are
always present in the input data, the unique strength of this algorithm (i.e., of predicting all
first-order internal multiples without any subsurface information) is always present. However,
when internal multiples themselves are selected in that procedure, spurious events (events that
do not exist in the data) can also be generated. For the presence of such spurious events, We-
glein et al. (2011), Liang et al. (2013), and Ma and Weglein (2014a) show that the spurious
events are fully anticipated by the ISS and that specific higher-order terms from ISS will pre-
cisely address that spurious-event issue. The inclusion of higher-order terms provides a new
ISS internal-multiple-attenuation algorithm that does not generate the spurious events and that,
at the same time, retains the strength of the current algorithm.

Last year’s annual report (Ma and Weglein, 2014b) documents the work of applying the
aforementioned new algorithm to address the spurious-event issue in a 1D case. In this report,
we discribe our progress (since last year) on addressing spurious events. We present test results
in a 2D case and exemplifying the relevant and practical benefits provided by this new internal-
multiple algorithm.

1 The current ISS internal-multiple-attenuation algorithm

In a 2D case, the current ISS internal-multiple-attenuation algorithm (Araujo et al., 1994; Weglein
et al., 1997) starts with the input data,D(kg, ks, ω), which are the Fourier transform of the deghosted
prestack data, and with the wavelet deconvolved and direct wave and free-surface multiples re-
moved. The second term, D3(kg, ks, ω), is the attenuator of the first-order internal multiples. In a
2D earth, D3(kg, ks, ω) is obtained from b3(kg, ks, ω) = −2iqsD3(kg, ks, ω), where b3(kg, ks, ω)
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is (Weglein et al., 2003)

b3(kg, ks, qs + qs) =
1

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2e
−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞
−∞

dz1b1(kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3b1(k2, ks, z3)ei(q2+qs)z3 , (1)

where ks and kg are the horizontal wavenumbers for the source and receiver coordinates, respec-

tively; qg and qs are the vertical source and receiver wavenumbers defined by qi = sgn(ω)
√

ω2

c20
− k2

i

for i ∈ {g, s} (ω is the temporal freqency); zs and zg are source and receiver depths; and zj
(i ∈ {1, 2, 3}) represents pseudo-depth1 by using a reference velocity migration. The quantity
b1(kg, ks, z) corresponds to an uncollapsed migration (Stolt and Weglein, 1985; Weglein et al.,
1997) of effective plane-wave incident data.

The data, with their first-order internal multiple attenuated, are

D(kg, ks, ω) +D3(kg, ks, ω). (2)

2 The origin of spurious-event predictions

The ISS internal-multiple-attenuation algorithm (i.e., equation 1) selects three events by a “longer-
shorter-longer” relationship in the vertical-travel-time domain (or, equivalently, a “deeper-shallower-
deeper” relationship in the pseudo-depth domain (Nita and Weglein, 2007)), and the primaries se-
lected in that procedure predict the accurate time and approximate amplitude of all first-order in-
ternal multiples, without requiring any subsurface information (Weglein et al., 2003). However, the
input data contain both primaries and internal multiples. When internal multiples themselves are
selected in that procedure, a spurious event can be generated (Weglein et al., 2011).

Ma et al. (2011) and Liang et al. (2013) provide examples to explain that two types of spurious-
event predictions can be generated — a primary-internal multiple-primary or “PIP ” type (see
Figure 1) and a primary-primary-internal multiple, or “PPI ”type2 — under circumstances in which
three or more reflectors are involved in the data being processed. Their work also demonstrates that
the spurious-event issue is more significant as a consequence of there being numerous internal-
multiple generators in many offshore and most onshore plays. Thus, addressing such spurious
events is essential and indispensable.

1Pseudo-depth refers to the location of an image derived using the background reference velocity. Since the reference
velocity is constant (water), pseudo-depth is essentially vertical-travel time (Weglein et al., 2003).

2 “P ” and “I ” represent P rimary and Internal multiple, respectively. “PIP ” means a type of spurious event that
is generated by selecting “Primary-Internal multiple-Primary” in this algorithm; “PPI ” means a type of spurious event
that is generated by selecting “Primary-Primary-Internal multiple” in this algorithm.
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Figure 1: In a three-reflector example, a “Primary-Internal multiple-Primary (PIP ) combination
predicts a spurious event. The subscripts in P3 and I212 represent the locations of the reflections.

3 A new ISS internal-multiple-attenuation algorithm that predicts the accurate time
and approximate amplitude of the first-order internal multiple and addresses spu-
rious events

The spurious-event issue is fully anticipated by the Inverse Scattering Series (ISS), and there are
higher-order ISS terms that precisely address that issue. Also, the inclusion of higher-order terms
provides a new ISS internal-multiple-attenuation algorithm that does not generate spurious events
and retains the strength of the current algorithm.

As an example, in a 2D case, we provide two terms that address the aforementioned two types
of spurious events, as follows:

b5(kg, ks, qs + qs)PIP =
1

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2e
−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞
−∞

dz1b1(kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b3(k1, k2, z2)e−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3b1(k2, ks, z3)ei(q2+qs)z3 , (3)

and

b5(kg, ks, qs + qs)PPI =
2

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2e
−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞
−∞

dz1b1(kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1, k2, z2)e−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3b3(k2, ks, z3)ei(q2+qs)z3 . (4)

On the left-hand side of equation 3 and equation 4, the subscript 5 indicates that these two terms
are derived from the fifth-order term of the Inverse Scattering Series, and the subscripts PIP and
PPI indicate the two higher-order terms that address the PIP and PPI types of spurious events,
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respectively. On the right-hand side of equation 4, the number “2” in the numerator of the coefficient
is because the PPI type of spurious event could be produced by the attenuator (i.e., equation 1)
using an internal multiple subevent in either of the outer integrals (these two cases are equivalent)
(Liang et al., 2013).

After all the terms in the series that address the spurious events have been identified, a new ISS
internal-multiple-attenuation algorithm is provided by including all those terms. The new algorithm
boils down the following,

D(xg, xs; t) +DNew
3 (xg, xs; t), (5)

where bNew3 (kg, ks, ω) = −2iqsDNew
3 (kg, ks, ω). bNew3 (kg, ks, ω) is obtained by

bNew3 (kg, ks, qs + qs) =
1

(2π)2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2e
−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞
−∞

dz1b
New
1 (kg, k1, z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b

New
1 (k1, k2, z2)e−i(q1+q2)z2

×
∫ ∞
z2+ε

dz3b
New
1 (k2, ks, z3)ei(q2+qs)z3 , (6)

where bNew1 (kg, ks, qs + qs) is calculated using [D(kg, ks, ω) + D3(kg, ks, ω)] (see Figure 3). For
the purpose of comparison, we provide the current algorithm in Figure 2 and the new algorithm in
Figure 3.

The new algorithm addresses the spurious events by reducing the internal multiples and making
[D(kg, ks, ω) +D3(kg, ks, ω)] the new input.

Figure 2: In a 2D case, the workflow of the current ISS internal-multiple-attenuation algorithm. Step
1 is the uncollapsed-Stolt migration, step 2 is the prediction from the attenuator of the first-order
internal multiples, and step 3 transforms the prediction back into space-time domain.
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Figure 3: In a 2D case, the workflow of the new ISS internal-multiple-attenuation algorithm, which
addresses the issue of spurious events. The steps are the same as in Figure 2, but here a new input
is used. D3(xg, xs; t) in the input data are obtained from the current algorithm shown in Figure 2.

4 Numerical tests in 2D

4.1 The current release of the ISS internal-multiple-attenuation code

The current release of the ISS internal-multiple-attenuation code (corresponding to Figure 2 with
angle-constraints applied3) is in the The MOSRP SU package4, with an updated EXAMPLES direc-
tory on M-OSRP website (http://www.mosrp.uh.edu/research/projects/coding).

The programs in that package that perform the ISS internal-multiple-attenuation are su3stoltmig
and su3issima5.

• su3stoltmig performs the uncollapsed-Stolt migration using the input data (i.e., step 1 in
Figure 2);

• su3issima performs the ISS internal-multiple prediction using the output from su3stoltmig
as input and then transforms the prediction result back to the space-time domain (i.e., step 2
and step 3 in Figure 2).

The updated EXAMPLES directory in the current release contains a new demo script that uses
su3stoltmig and su3issima to perform a 2D ISS internal-multiple prediction with a 2D syn-
thetic data set (Terenghi and Weglein, 2011).

3See Terenghi and Weglein (2011) for more details on angle constraints.
4MOSRP SU package is a software package that is based on and fully consistent with CWP/SU, composed of a variety

of programs developed at M-OSRP.
5The number 3 in su3stoltmig and su3issima means that these two programs process data generated from a

multi dimensional earth. There are two other programs (su1stoltmig and su1issima) in the package that process
data generated from a 1D earth.
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4.2 Numerical tests to address the spurious-event issue in 2D

From Figure 2 and Figure 3 we note that, the new algorithm (Figure 3) is similar to the current
algorithm (Figure 2) but that it has a different input. Hence, in testing the new algorithm and
examining the impact of addressing the spurious-event issue in multi dimensions, we benefit from
the current programs by using a different input6,7.

We will use the same data set provided in the updated EXAMPLES directory to verify the cor-
rectness of the new algorithm and to study the significance of addressing the spurious-event issue.

The data consist of 251 shots × 251 receivers, with both shot and receiver-intervals of 25 m;
each trace has 500 samples with a total duration of 4s. The internal multiples will be strong because
of the large impedance contrast between layers (see Figure 4).

Figure 4: Synthetic velocity and density model used to generate the test data in this section (courtesy
of WesternGeco). The average dip of the walls of the trench featured in the center of the model is
approximately 20 degree (Figure adapted from Terenghi and Weglein (2011).

Figure 5 and Figure 6 show one shot comparison and one trace comparison, respectively, be-
tween the test data and the prediction results without (Figures 5a and 6a) and with (Figures 5b
and 6b) addressing the spurious-event issue. In Figure 5, black arrows and red arrows point to the
primaries and internal multiples, respectively. The numbers in the subscript indicate the reflector(s)
at which the reflection occur8. The blue arrows in Figure 5 indicate the places where the prediction
result better matches the test data because spurious events have been addressed(see black arrows in
Figure 6 for details).

Compared with that in Figure 5a, the prediction of higher-order internal multiples9 in Figure 5b
gets reduced (see red arrows in Figure 6 for details) because of the reduced internal multiple in the

6The input of the new algorithm requires both D1(xg, xs; t) (the input of the current algorithm) and D3(xg, xs; t)
(the output of the current algorithm), therefore, the current algorithm is first carried out to obtain D3(xg, xs; t).

7We will also provide two programs (su3issima pip and su3issima ppi) to address “PIP ” and “PPI” type
spurious events.

8For example, P1 represents the primary where the reflection happens at the first reflector, and I212 represents the
first-order internal multiple where the three reflections happen at the second reflector, the first-reflector and the second
reflector.

9e.g., the second-order internal multiple represented by I21212 in Figure 5.
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(a) (b)

Figure 5: A shot comparison between the test data (left part) and the ISS internal-multiple prediction
(right part) without (Figure 5a) and with (Figure 5b) addressing the spurious events. Blue arrows
point to the places where the predictions results with the addressing the spurious-events issue better
match the data.

(a) (b)

Figure 6: A trace comparison (from 1.4s to 2.6s) between the test data (red line) and the ISS internal-
multiple prediction (blue line) without (Figure 6a) and with (Figure 6b) addressing the spurious
events. Black arrows point to the places where the prediction results with the addressing of the
spurious-events issue better match the data.
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input data.

It is worth noting that the spurious-event issue in this synthetic test (based on a three-reflector
model) is not as significant as the spurious-event issue in many real off-shore and on-shore plays.
That is because the spurious-event issue is more significant when there are tens or hundreds of
internal-multiple generators, as is the case in the real word (Ma and Weglein, 2014a).

5 Conclusions

We have continued last year’s work, and in this report we document our progress on addressing the
spurious-event issue of the current ISS internal-multiple-attenuation algorithm. We analyze and test
a new ISS internal-multiple-attenuation algorithm, in multi dimensions, that anticipates and removes
the spurious events that are generated by the current ISS internal-multiple-attenuation algorithm and
at the same time retains the strength of the current algorithm.

The numerical test on a synthetic 2D data set in this report shows the added value of applying
the new algorithm to address the presence of spurious events, which can be significant in many
real-world applications. This issue will arise when many reflectors generate multiples in complex
onshore and offshore plays, and the resulting spurious events can be a serious impediment to inter-
pretation and to effective drilling decisions. The new algorithm in this report addresses that issue.
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A new Inverse Scattering Series (ISS) internal-multiple-attenuation algorithm that predicts the ac-
curate time and approximate amplitude of the first-order internal multiples and addresses spurious
events: Analysis and Tests in 2D
Chao Ma ∗ and Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

The ISS internal-multiple-attenuation algorithm assumes that
the free-surface multiples have been removed from the input
of this algorithm, and the input consists of only primaries and
internal multiples. The algorithm selects three events by a
“longer-shorter-longer” relationship in the vertical-travel-time
domain and the primaries selected in that procedure predict the
accurate time and approximate amplitude of all first-order in-
ternal multiples without any subsurface information (Weglein
et al., 2003). However, the input data contain both primaries
and internal multiples. When internal multiples themselves
are selected in that procedure, two different types of events
will be produced. The first type is higher-order internal mul-
tiples (e.g., second-order internal multiples (Zhang and Shaw,
2010)), and these predicted higher-order internal multiples will
cooperatively assist and benefit the attenuating of higher-order
internal multiples in the data. The second type is spurious
events (events that do not exist in the data). For the sec-
ond type of events, Weglein et al. (2011), Liang et al. (2013)
and Ma and Weglein (2014) show that the spurious events are
fully anticipated by the ISS, and specific higher-order terms
from ISS will precisely address that spurious-event issue. The
inclusion of higher-order terms provides a new ISS internal-
multiple-attenuation algorithm that does not generate the spu-
rious events and, at the same time, retains the strength of the
original algorithm. That original contribution (i.e., the afore-
mentioned new algorithm) was for a one dimensional subsur-
face. In this paper, we extend the previous work on addressing
the spurious events to a multi-D case and show more realistic
synthetic test results in 2D. Those tests exemplify the relevant
and practical benefit provided by this new internal-multiple al-
gorithm.

INTRODUCTION

The inverse scattering series (ISS) communicates that it is pos-
sible to achieve all seismic data processing objectives directly
and without subsurface information. The current ISS internal-
multiple-attenuation algorithm was first developed by Araujo
et al. (1994) and Weglein et al. (1997). The unique strength (al-
ways present independent of the circumstances and complex-
ity of the geology and the play) of the ISS internal-multiple-
attenuation algorithm is that this algorithm is able to predict
internal multiples without any subsurface information. Hence,
the ISS internal-multiple-attenuation algorithm is often called
upon in the cases in which the multiple-removal is a chal-
lenging problem and it is difficult to find the subsurface in-
formation for other multiple-suppression methods to be effec-
tive. The tests on ISS internal-multiple-attenuation algorithm
have shown promising results and unique value compared

with other multiple-suppression methods (e.g., K.Maston et al.
(1999); Fu et al. (2010); Hsu et al. (2010); Ferreira (2011);
Terenghi et al. (2011); Luo et al. (2011); Weglein et al. (2011);
Kelamis et al. (2013)).

Early analysis of the current ISS internal-multiple-attenuation
algorithm focused on selecting primaries in the input to pre-
dict internal multiples. However, the input data contain both
primaries and internal multiples and all events in the data will
be selected. Internal multiples selected in this algorithm can
generate spurious events under the circumstances where three
or more reflectors are involved in the data being processed as
shown by Weglein et al. (2011), Liang et al. (2013) and Ma
and Weglein (2014).

The work of Ma and Weglein (2014) also demonstrates that
spurious-event issue is serious and significant when there are
tens, hundreds (or even thousands) of internal-multiple gen-
erators (e.g., Middle East and North Sea), and addressing the
spurious events under those circumstances is essential by ap-
plying a new ISS algorithm that addresses the spurious-event
prediction and retains the strength of the original algorithm si-
multaneously. In this paper, we extend the analysis of address-
ing the spurious events to a multi-D case, and also provide a
more realistic numerical test in 2D.

THE CURRENT ISS INTERNAL-MULTIPLE-
ATTENUATION ALGORITHM

The current ISS internal-multiple-attenuation algorithm starts
with the input data, D(kg,ks,ω), in 2D case, which are the
Fourier transform of the deghosted prestack data, and with the
wavelet deconvolved and direct wave and free-surface multi-
ples removed. The second term, D3(kg,ks,ω), is the attenuator
of the first-order internal multiples. In a 2D earth, D3(kg,ks,ω)
is obtained from b3(kg,ks,ω) = −2iqsD3(kg,ks,ω), where
b3(kg,ks,ω) is (Weglein et al., 2003)

b3(kg,ks,qs +qs) =
1

(2π)2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2e−iq1(zg−zs)eiq2(zg−zs)

×
∫ ∞

−∞
dz1b1(kg,k1,z1)ei(qg+q1)z1

×
∫ z1−ε

−∞
dz2b1(k1,k2,z2)e−i(q1+q2)z2

×
∫ ∞

z2+ε
dz3b1(k2,ks,z3)ei(q2+qs)z3 , (1)

where ks and kg are the horizontal wavenumbers for the
source and receiver coordinates, respectively; qg and qs are
the vertical source and receiver wavenumbers defined by qi =

sgn(ω)
√

ω2

c2
0
− k2

i for i ∈ {g,s} (ω is the temporal freqency);

M-OSRP Annual Report, 2015

329



zs and zg are source and receiver depths; and z j (i ∈ {1,2,3})
represents pseudo-depth by using a reference velocity migra-
tion. The quantity b1(kg,ks,z) corresponds to an uncollapsed
migration (Weglein et al., 1997) of effective plane-wave inci-
dent data.

The data with their first-order internal multiple attenuated are

D(kg,ks,ω)+D3(kg,ks,ω). (2)

For a 1-D earth and a normal incident plane wave, equation 1
reduces to

b3(k) =
∫ ∞

−∞
dz1eikz1 b1(z1)

∫ z1−ε

−∞
dz2e−ikz2 b1(z2)

×
∫ ∞

z2+ε
dz3eikz3 b1(z3). (3)

The deghosted data, D(t), for an incident plane wave, sat-
isfy D(ω) = b1( 2ω

c0
), D(ω) is the temporal Fourier transform

of D(t), b1(z) =
∫ ∞
−∞ eikzb1(k)dk, and k = 2ω

c0
is the vertical

wavenumber.

Equation 2 then reduces to

D(t)+D3(t), (4)

where D3(t) is Inverse Fourier transform of D3(ω), and
D3(ω) = b3( 2ω

c0
), where k = 2ω

c0
.

Figure 1 illustrates the idea behind using equation 1 or equa-
tion 3 to predict the first-order internal multiple by selecting
primaries (events that experience only one upward reflection)
in the data as subevents, and combining different subevents
that satisfy the “ longer(A)-shorter(B)-longer(C) ”relationship
in vertical-travel-time domain (or equivalently, “ lower(A)-
higher(B)-lower(C) ” relationship in pseudo-depth domain
(Nita and Weglein, 2007)).

Figure 1: An internal multiple (dashed line) constructed by the
lower-higher-lower pattern of three primary subevents (solid
line). Figure adapted from Weglein et al. (2003)

THE ORIGIN OF SPURIOUS EVENTS AND ITS RESO-
LUTION IN 1D

The work of Araujo et al. (1994) and Weglein et al. (1997) fo-
cuses on the analysis of the prediction of first-order internal
multiples (i.e., equation 1) by using primaries in the data as

Figure 2a: In a two-reflector example, a “Primary – Primary –
Internal multiple” combination predicts a second-order inter-
nal multiple.

Figure 2b: In a three-reflector example, a “Primary – Internal
multiple – Primary” combination predicts a spurious event.

subevents (see Figure 1). However, data consist of both pri-
maries and internal multiples. Zhang and Shaw (2010) show
that higher-order internal multiples will be predicted by b3
when internal multiples themselves are selected as a subevents
in a two-interface case. For example, in Figure 2a, a second-
order internal multiples will be predicted when a first-order
internal multiple is selected as a subevent.

In addition, the situation is considerably more complicated
when the data from three or more reflectors are considered. For
instance, spurious events can also be generated when an inter-
nal multiple is selected as a subevent in a three-reflector ex-
ample, as shown in Figure 2b. However, these spurious events
are also entirely anticipated by the inverse scattering series and
there are terms in the series that can exactly address those false
event prediction.

After identifying all the terms in the series that address the
spurious events, a new ISS internal-multiple-attenuation algo-
rithm is provided by including those terms. The new algorithm
boils down as follows,

D(t)+DNew
3 (t), (5)

where DNew
3 (t) is the Inverse Fourier transform of DNew

3 (ω),
DNew

3 (ω) = bNew
3 (k = 2ω

c0
), and bNew

3 (k) is obtained from

bNew
3 (k) =

∫ ∞

−∞
dz1eikz1(b1(z1)+b3(z1))

×
∫ z1−ε

−∞
dz2e−ikz2(b1(z2)+b3(z2))

×
∫ ∞

z2+ε
dz3eikz3(b1(z3)+b3(z3)). (6)

The new algorithm will address the spurious events by reduc-
ing the internal multiples using (b1(z)+ b3(z)) as the new in-
put.
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Figure 3a: In a 2D case, the workflow of the current ISS
internal-multiple-attenuation algorithm. Step 1 is the uncol-
lapsed Stolt migration, step 2 is the prediction from the atten-
uator of the first-order internal multiples, step 3 transforms the
prediction back to space-time domain.

A NEW ISS INTERNAL-MULTIPLE-ATTENUATION
ALGORITHM THAT PREDICTS THE ACCURATE
TIME AND APPROXIMATE AMPLITUDE OF THE
FIRST-ORDER INTERNAL MULTIPLE AND AD-
DRESSES SPURIOUS EVENTS

By understanding the generation of the spurious events and its
resolution in 1D case, we provide a new multi-D ISS internal-
multiple-attenuation algorithm (Figure 3b) that addresses the
spurious events and preserves the strength of the current algo-
rithm. For the purpose of comparison, we show the current ISS
internal multiple attenuation algorithm in Figure 3a.

We test the new algorithm using a synthetic 2D data set. Figure
4 shows a three-reflector model used to generate the 2D syn-
thetic data set by finite-difference method. The data consist
of 251 shots × 251 receivers, with both shot- and receiver-
interval 25 m, each trace has 500 samples with a total duration
4s. The internal multiples will be strong because of the big
impedance contrast between layers. Figure 5 and 6 show one
shot and trace comparison between the test data and the pre-
diction results with (Figure 5b and 6b) and without (Figure
5a and 6a) addressing the spurious-event prediction. In Fig-
ure 5, black and red arrows point to the primaries and internal
multiples, respectively. The numbers in the subscript indicate
the reflectors where the reflection happens. The blue arrows in
Figure 5 indicate the places where the prediction result with
the addressing of spurious events better matches the test data
than that without addressing the spurious events (see black ar-
rows in Figure 6 for details). Compared with Figure 5a (or 6a),
the prediction of higher-order internal multiples (e.g., I21212)
in Figure 5b (or 6b) gets reduced (see red arrows in Figure
6 for details) because of the reduced internal multiple in the
input data.

Figure 3b: In a 2D case, the workflow of the new ISS internal-
multiple-attenuation algorithm with the addressing of the spu-
rious events. The steps are same as in Figure 3a, but using a
new input. D3(xg,xs; t) is the output from the current algorithm
in Figure 3a.

Figure 4: Synthetic velocity and density model used to gener-
ate the test data in this section (courtesy of WesternGeco). The
average dip of the walls of the trench featuring in the center
of the model is approximately 20 degree (Figure adapted from
Terenghi and Weglein (2011)).

CONCLUSIONS

In this paper, we analyze, develop and test a new multi-D ISS
internal-multiple-attenuation algorithm that anticipates and re-
moves the spurious events that are generated by the current ISS
internal-multiple-attenuation algorithm. The numerical test on
a synthetic 2D data set in this paper shows the added value of
applying the new algorithm to address the spurious events that
can be significant many real-world applications. This issue
will arise when many reflectors generate the multiples in com-
plex on-shore and off-shore plays, and can be serious impedi-
ment to interpretation and making effective drilling decisions.
The new algorithm in this paper addresses that issue.
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Figure 5a: A shot comparison between the test data (left part)
and the ISS internal multiple prediction (right part) without
addressing the spurious events.

Figure 5b: A shot comparison between the test data (left part)
and the ISS internal multiple prediction (right part) with ad-
dressing the spurious events.

Figure 6a: A trace comparison (from 1.4s to 2.6s) between
the test data (red line) and the ISS internal multiple prediction
(blue line) without addressing the spurious events.

Figure 6b: A trace comparison (from 1.4s to 2.6s) between
the test data (red line) and the ISS internal multiple prediction
(blue line) with addressing the spurious events.
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An internal-multiple elimination algorithm for all first-order internal
multiples for a 1D earth

Yanglei Zou, Arthur B. Weglein

Abstract

The ISS (Inverse-Scattering-Series) internal-multiple attenuation algorithm (Araújo et al. (1994),We-
glein et al. (1997) and Weglein et al. (2003)) can predict the correct time and approximate
amplitude for all first-order internal multiples without any subsurface information. When com-
bined with an energy minimization adaptive subtraction, the ISS internal multiple attenuation
algorithm can effectively remove internal multiples when the primaries and internal multiples
are separated, and not overlapping or proximal. One of the issues that the adaptive subtraction is
addressing is the difference between the amplitude of the internal multiple and the approximate
amplitude predicted by the attenuation algorithm. However, under certain circumstances, both
offshore and onshore, internal multiples are often proximal to or interfering with primaries and
the criteria of energy minimization adaptive subtraction may fail, since the energy can increase
when e.g., a multiple is removed from an interfering primary. Therefore, in these situations,
the task of removing internal multiples without damaging primaries becomes more challenging
and subtle and currently beyond the collective capability of the petroleum industry. Weglein
(2014) proposed a three-pronged strategy for providing an effective response to this pressing
and prioritized challenge. One part of the strategy is to develop an internal-multiple elimination
algorithm that can predict both the correct amplitude and correct time for all internal multiples.
In this paper, we provide an ISS internal-multiple elimination algorithm for all first-order inter-
nal multiples generated from all reflectors in a 1D earth and provide an example from an elastic
synthetic data that shows the value provided by the new algorithm in comparison with the value
provided by the internal multiple attenuation algorithm.

1 Introduction

The ISS (Inverse-Scattering-Series) allows all seismic processing objectives, such as free-surface-
multiple removal and internal-multiple removal to be achieved directly in terms of data, without
any estimation of the earth’s properties. For internal-multiple removal, the ISS internal-multiple
attenuation algorithm can predict the correct time and approximate and well-understood amplitude
for all first-order internal multiples generated from all reflectors, at once, without any subsurface
information. If the internal multiples in the data are isolated, the energy minimization adaptive sub-
traction can fix the gap between the attenuation algorithm prediction and the internal multiples plus,
e.g., all factors that are outside the assumed physics of the subsurface and acquisition. However,
in certain situations, events often interfere with each other in both on-shore and off-shore seismic
data. In these cases, the criteria of energy minimization adaptive subtraction may fail and com-
pletely removing internal multiples becomes more challenging and beyond the current capability of
the petroleum industry.

For dealing with this challenging problem, Weglein (2014) proposed a three-pronged strategy
including

1. Develop the ISS prerequisites for predicting the reference wave field and to produce de-
ghosted data for both on shore and off shore.
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2. Develop internal-multiple elimination algorithms from ISS.

3. Develop a replacement for the energy-minimization criteria for adaptive subtraction.

To achieve the second part of the strategy, that is, to upgrade the ISS internal-multiple attenua-
tion algorithm to elimination algorithm, the strengths and limitations of the ISS internal-multiple at-
tenuation algorithm are noted and reviewed. The ISS internal-multiple attenuation algorithm always
attenuates all first-order internal multiples from all reflectors at once, automatically and without any
subsurface information. That is a tremendous strength, and is a constant and holds independent
of the circumstances and complexity of the geology and the play. However, there are two well-
understood limitations of this ISS internal-multiple attenuation algorithm

1. It may generate spurious events due to internal multiples treated as subevents.

2. It is an attenuation algorithm not an elimination algorithm.

The first item is a shortcoming of the leading order term (the attenuation algorithm), when
taken in isolation, but is not an issue for the entire ISS internal-multiple removal capability. It
is anticipated by the ISS and higher order ISS internal multiple terms exist to precisely remove
that issue of spurious events prediction. When taken together with the higher order terms, the ISS
internal multiple removal algorithm no longer experiences spurious events prediction. Ma et al.
(2012) , H. Liang and Weglein (2012) and Ma and Weglein (2014) provided those higher order
terms for spurious events removal.

In a similar way, there are higher order ISS internal multiple terms that provide the elimination
of internal multiples when taken together with the leading order attenuation term. There are early
discussions in Ramı́rez (2007) and Wilberth Herrera and Weglein (2012) find higher order terms in
ISS that can eliminate all first-order internal multiples generated at the shallowest reflector for 1D
normal incidence spike plane wave. The next step, elimination of all first-order internal-multiples
generated from all reflectors, is a very challenging problem even in a 1D earth. In a model with
several reflectors, there is a set of internal multiples generated by each reflector in the data, and for
different sets of internal multiples, the amplitude difference between attenuation algorithm predic-
tion and the amplitude of real internal multiples is different. This elimination algorithm must have
the capability to remove all the amplitude differences between attenuation algorithm prediction and
the real internal multiples for all generators. While the activity of finding higher order terms in
ISS that can completely eliminate all internal multiples is undertaken, we derived an elimination
algorithm from an alternative approach, i.e. using reverse engineering method as a guide and a tool
to understand the internal multiple elimination machinery in the ISS. This elimination algorithm
can predict both correct time and amplitude of all first-order internal-multiples generated from all
reflectors in a 1D earth. And it is closely related to ISS and preserves the following advantages of
ISS attenuation

1. It only needs data, does not require any subsurface information.

2. It provides the capability to remove all internal multiples without choosing or picking gener-
ators.

And this elimination algorithm derived by using reverse engineering method is model type de-
pendent. (The ISS internal-multiple attenuation algorithm is model type independent.)
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2 The ISS internal-multiple attenuation algorithm and the attenuation factor for 1D
normal incidence

First, we will give a review of the ISS internal-multiple attenuation algorithm before introducing the
elimination algorithm. The ISS internal-multiple attenuation algorithm was first given by Araújo
(1994) and Weglein et al. (1997). The 1D normal-incidence version of the algorithm is presented as
follows:

bIM3 (k) =
∫ ∞
−∞

dzeikzb1(z)
∫ z−ε2

−∞
dz′e−ikz

′
b1(z′)

∫ ∞
z′+ε1

dz′′eikz
′′
b1(z′′), (1)

Where b1(z), which is closely related to the data, is the water-speed migration of the data due to
a 1D normal-incidence spike plane wave. In the following example, we will show how to obtain
b1(z) from data and predict internal multiples. The terms ε1 and ε2 are two small positive numbers
introduced to avoid self interaction. This equation can predict the correct time and an approximate
amplitude of all first-order internal multiples.

To demonstrate explicitly the mechanism of the ISS internal-multiple attenuation algorithm and
to examine its properties, Weglein et al. (2003) considered the simplest two-layer model that can
produce an internal multiple. For this model, the reflection data caused by an impulsive incident
wave δ(t− z

c ) is:

D(t) = R1δ(t− t1) + T01R2T10δ(t− t2) + · · · ,
where t1, t2 and R1, R2 are the two-way travel times and the reflection coefficients from the two
reflectors,respectively; and T01 and T10 are the coefficients of transmission between model layers 0
and 1 and 1 and 0, respectively. Then

D(ω) = R1e
iωt1 + T01R2T10e

iωt2 + · · · ,

whereD(ω) is the temporal Fourier transform of D(t).
Given a 1D medium and a normal incident wave, kz = 2ω

c0
and b1(kz) = D(ω), and the following

is obtained:
b1(kz) = R1e

i 2ω
c0

c0t1
2 + T01R2T10e

i 2ω
c0

c0t2
2 + · · · .

The pseudo-depths z1 and z2 in the reference medium are defined as follows:

z1 =
c0t1

2
z2 =

c0t2
2
.

The input data can now be expressed in terms of k = kz , z1, and z2:

b1(k) = R1e
ikz1 + T01R2T10e

ikz2 + · · · .
The date are now ready for the internal-multiple attenuation algorithm.
Substituting b1(k) into the algorithm, we derive the prediction:

bIM3 (k) = R1R
2
2T

2
01T

2
10e

2ikz2e−ikz1 ,

which in the time domain is:

bIM3 (t) = R1R
2
2T

2
01T

2
10δ(t− (2t2 − t1)).
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From the example it is easy to compute the actual first-order internal multiple precisely:

−R1R
2
2T01T10δ(t− (2t2 − t1)).

Therefore, the time prediction is precise, and the amplitude of the prediction has an extra power of
T01T10, which is called the attenuation factor, thus defining exactly the difference between attenua-
tion (represented by bIM3 ) and elimination.

Figure 1: An example of the attenuation factor of a first-order internal multiple generated at the
shallowest reflector. Notice that all red terms are extra transmission coefficients

Figure 2: An example of the attenuation factor of a first-order internal multiple generated at the next
shallowest reflector. Notice that all red terms are extra transmission coefficients

The procedure for predicting a first-order internal multiple generated at the shallowest reflector
is shown in Figure 1. The ISS internal-multiple attenuation algorithm uses three primaries in the
data to predict a first-order internal multiple. From the figure we can see that, every sub-event on
the left-hand side experiences several phenomena as it makes its way down to the earth then back
to the receiver. When compared with the internal multiple on the right-hand side, the events on
the left-hand side have extra transmission coefficients, which are shown in red. Multiplying all of
those extra transmission coefficients, we get the attenuation factor T01T10 for this first-order internal
multiple generated at the shallowest reflector. And all first-order internal multiples generated at the
shallowest reflector have the same attenuation factor.

Figure 2 shows the procedure for predicting a first-order internal multiple generated at the next
shallowest reflector. In this example, the attenuation factor is (T01T10)2(T12T21).

To derive a general formula for the amplitude prediction of the algorithm, Ramı́rez (2007) ana-
lyzed a model with n layers and respective velocitiesCn, n being an integer. By using the definitions

R1 = R′1, R′N = RN
∏N−1

i=1
(Ti−1,iTi,i−1), and Einstein’s summation, and we apply them to the

reflection data from a normal-incident spike wave, we can obtain the following:

D(t) = R′nδ(t− tn) + internal multiples. (2)
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The generalized prediction of the attenuation algorithm is obtained by

bIM3 (k) = R′iR
′
jR
′
ke
ikzieikzjeikzk , (3)

which in the time domain becomes

bIM3 (t) = R′iR
′
jR
′
kδ(t− (ti + tk − tj)) (4)

By evaluating equation (3) for different values of i, j, and k, the amplitude prediction of first-
order internal multiples is obtained and can be generalized for any number of layers in a 1D model.
The generalization of the internal-multiple’s amplitude states that the overabundance of transmission
coefficients depends on the position of the generating reflector (i.e., where the downward reflection
took place). Compared with the real amplitude of internal multiples in the data, we can obtain the
attenuation factor.

The attenuation factor, AFj , in the prediction of internal multiples, is given by the following:

AFj =

{
T0,1T1,0 (for j = 1)∏j−1

i=1
(T 2
i−1,iT

2
i,i−1)Tj,j−1Tj−1,j (for 1 < j < J)

(5)

The attenuation factor AFj can also be rewritten by using reflection coefficients:

AFj =

{
1−R2

1 (for j = 1)
(1−R2

1)2(1−R2
2)2 · · · (1−R2

j−1)2(1−R2
j ) (for 1 < j < J)

(6)

The subscript j represents the generating reflector, and J is the total number of interfaces in the
model. The interfaces are numbered starting with the shallowest location. The attenuation algorithm
bIM3 predicts a first-order internal multiple by using three events within the data. The attenuation
factor is directly related to the trajectory of the events, and that trajectory forms the prediction of
the internal multiple.

3 The ISS internal-multiple elimination algorithm for 1D normal incidence

The discussion above demonstrates that all first-order internal multiples generated at the same re-
flector have the same attenuation factor. Also, we derived a generalized formula for the attenuation
factor for all reflectors. We can see that the attenuation factor contains all transmission coefficients,
from the shallowest reflector down to the reflector generating the multiple. From the examples
(shown in Figure 1 and 2), we can also see that the middle event contains all those transmission co-
efficients. Therefore, our idea is to modify the middle term in the attenuation algorithm to remove
the attenuation factor and make the attenuation algorithm an eliminator. That is, we go from

bIM3 (k) =
∫ ∞
−∞

dzeikzb1(z)
∫ z−ε2

−∞
dz′e−ikz

′
b1(z′)

∫ ∞
z′+ε1

dz′′eikz
′′
b1(z′′) (7)

to

bIME (k) =
∫ ∞
−∞

dzeikzb1(z)
∫ z−ε2

−∞
dz′e−ikz

′
F [b1(z′)]

∫ ∞
z′+ε1

dz′′eikz
′′
b1(z′′) (8)
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For 1D normal incidence, b1(z) is expressed as:

b1(z) =R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · ·+R′nδ(z − zn) + · · · . (9)

To remove all attenuation factors in the prediction, the term F [b1(z)] should be written as:

F [b1(z′)] =
R1

AFj=1
δ(z′ − z1) +

R′2
AFj=2

δ(z′ − z2) + · · ·+ R′n
AFj=n

δ(z′ − zn) + · · ·

=
R1

1−R2
1

δ(z′ − z1) +
R′2

(1−R2
1)2(1−R2

2)
δ(z′ − z2) + · · ·

+
R′n

(1−R2
1)2(1−R2

2)2 · · · (1−R2
n−1)2(1−R2

n)
δ(z′ − zn) + · · · . (10)

Figure 3: The straight forward strategy

The basic strategy to construct F [b1(z)] in terms of b1(z) is to first construct the attenuation
factor by b1(z), and then to construct F [b1(z)] by using b1(z) and attenuation factor. The attenua-
tion factor can be written in reflection coefficients, and then we can map the reflection coefficients
to R′s (R′s are the amplitudes of the events in data), finally construct the R′s by b1(z), as shown in
figure 3. However, we have tried this approach and found that it is difficult to achieve.

Figure 4: Modified strategy

Next, we propose another way to achieve the goal. By introducing a new function called g(z) in
which the amplitude of each event corresponds to a reflection coefficient, we find a way to construct
F [b1(z)] by using b1(z) and g(z). After that, we find an integral equation about b1(z) and g(z). If
we can solve the latter equation for g(z) and integrate it into the first part, we can achieve our goal
(as shown in Figure 4 ).

By using that modified strategy, the F [b1(z)] is discovered (See Appendix A for the derivation):
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F [b1(z)] =
b1(z)

[1− (
∫ z+ε
z−ε dz

′g(z′))2][1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)]2

(11)

g(z) =
b1(z)

1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)
(12)

To derive the F [b1(z)] from b1(z), g(z) must first be solved in equation (12). Thereafter, g(z) is
integrated into equation (11).

4 The ISS internal-multiple elimination algorithm for 1D pre-stack data

4.1 A 2-reflector analytic example for the ISS internal-multiple attenuation algo-
rithm in a 1D pre-stack acoustic medium

Now we will go on to extend the elimination algorithm for a 1D pre-stack data. Before that we need
to better understand the mechanism of the attenuation algorithm for a 1D pre-stack data. What does
b1 looks like for a 1D pre-stack data? Is there any analog of the attenuation factors in 1D pre-stack
acoustic medium? If yes, what is it?

In order to answer these questions, we will look at an analytic example for a 2-reflector acoustic
medium in 1D pre-stack.

The first question is what is b1 in 1D pre-stack? We know that b1 is closely related to the
measured data D. If we can get the data, we can obtain b1. Thus, first we need to obtain the data.
Let us consider a delta source at (xs, zs), wherein the wave generated at (xg, zg) by this source is
the Green’s function:

G0(xg, zg, xs, zs, ω) =
1

2π

∫ ∞
−∞

dk′s
eik
′
s(xg−xs)eiq′s|zg−zs|

2iq′s
(13)

Let us set zs = 0 and let zg be positive, so that we can evaluate the absolute value,

G0(xg, zg > 0, xs, zs = 0, ω) =
1

2π

∫ ∞
−∞

dk′s
e−ik′sxs

2iq′s
eik
′
sxg+iq′szg . (14)

Then, for simplicity, we will ignore the evanescent part, which means k′s < ω/c. That does not
mean the algorithm can not handle the evanescent part. However, for many cases the evanescent
part is small and can be ignored, and the math will be much simpler and easier to understand. Now
the Green’s function is:

G0(xg, zg > 0, xs, zs = 0, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik′sxs

2iq′s
eik
′
sxg+iq′szg . (15)
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At this point, G0 can be regarded as a superposition of plane waves eik
′
sx+iq′sz with weights

e−ik
′
sxs

2iq′s
.

For a plane wave eik
′
sx+iq′sz incident in an acoustic medium, the reflected wavefield is: (Note that It

can be calculated by using the forward scattering series, as in Nita et al. (2004))

D(k′s, q
′
s, xg, zg = 0) = R(k′s, q

′
s)e

ik′sxge2iq′sz1 . (16)

Figure 5: prestack

Then the total wave-field is (we set zg = zs = 0):

D(xs, zs = 0, xg, zg = 0, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik′sxs

2iq′s
D(k′s, q

′
s, xg, zg = 0). (17)

Now we get the data at one receiver (xg,0) from one delta source (xs,0) and rewrite it as:

D(xs, xg, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik′sxs

2iq′s
R(k′s, q

′
s)e

ik′sxge2iq′sz1 (18)

This is in the frequency-space domain, whereas the attenuation algorithm works in the frequency-
wavenumber domain. After Fourier transforming over the source and receivers, we convert the data
to the frequency-wavenumber domain1.

D(ks, kg, ω) = δ(ks − kg)R(ks, qs)e2iqsz1

4πiqs
(−ω/c < ks < ω/c) (19)

Now we define b1(ks, kg, ω) as (in the following discussion, we assume that −ω/c < ks <
ω/c):

b1(ks, kg, ω) = −2iqsD(ks, kg, ω)

= − 1
2π
δ(ks − kg)R(ks, qs)e2iqsz1 . (20)

1See appendix B for derivation
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Then, b1(ks, kg, ω) and the attenuation algorithm prediction b3(ks, kg, ω) are related by the 2D
internal-multiple attenuation algorithm:

b3(kg, ks, ω) =
∫ ∞
−∞

∫ ∞
−∞

dk1dk2

∫ ∞
−∞

dzei(qg+q1)zb1(kg, k1, z)
∫ z

−∞
dz′ei(−q1−q2)z′b1(k1, k2, z

′)

×
∫ ∞
z′

dz′′ei(q2+qs)z′′b1(k2, ks, z
′′)

Next with the definition of b1(ks, 2qs) and its prediction b3(ks, 2qs) for 1D pre-stack data, we
have:

b1(ks, kg, ω) = − 1
2π
δ(ks − kg)b1(ks, 2qs) (21)

b3(kg, ks, qg + qs) = − 1
(2π)3

δ(kg − ks)b3(ks, 2qs). (22)

Then, b1(ks, 2qs) and b3(ks, 2qs) are related by the 1D pre-stack algorithm:

b3(ks, 2qs) =
∫ ∞
−∞

dze2iqszb1(ks, z)
∫ z

−∞
dz′e−2iqsz′b1(ks, z′)

∫ ∞
z′

dz′′e2iqsz′′b1(ks, z′′)(23)

Ignoring the subscript s, we have

b3(k, 2q) =
∫ ∞
−∞

dze2iqzb1(k, z)
∫ z

−∞
dz′e−2iqz′b1(k, z′)

∫ ∞
z′

dz′′e2iqz′′b1(k, z′′). (24)

In the equation, for the first primary, we have

b1(k, 2q) = R(k, q)e2iqz1 , (25)

and b1(k, z) is the Fourier transform of b1(k, 2q) from 2q to z.

We can also get the reflection data from the second reflector, and we can obtain a first order
internal multiple as shown in Figure 6

Now, b1 can be written as,

b1(k1, 2q1) = R1(k1, q1)e2iq1z1

+T01R2(k2, q2)T10e
2iq1z1e2iq2(z2−z1)

−T01R2R1R2T10e
2iq1z1e4iq2(z2−z1) (26)

Here, q1 and q2 are vertical wavenumbers at each layer, and q2 is a function of q1. To Fourier
transform from q1 to z, first we need to substitute q2 with q1.

Using the relation,

q2
1 + k2

1 = (
ω

c1
)2 (27)

q2
2 + k2

2 = (
ω

c2
)2 (28)

k1 = k2, (29)
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Figure 6: prestack

we can express q2 in q1 and k1:

q2 =

√
(
c2

1

c2
2

− 1)k2
1 +

c2
1

c2
2

q2
1

=
c1

c2
q1 + [

√
(
c2

1

c2
2

− 1)k2
1 +

c2
1

c2
2

q2
1 −

c1

c2
q1]

=
c1

c2
q1 +

( c
2
1

c22
− 1)k2

1√
( c

2
1

c22
− 1)k2

1 + c21
c22
q2

1 + c1
c2
q1

=
c1

c2
q1 + S(k1, q1) (30)

Now we substitute q2 with q1:

b1(k1, 2q1) = R1(k1, q1)e2iq1z1

+R′2(k1, q1)e2i(z2−z1)S(k1,q1)e
2iq1(z1+

c1
c2

(z2−z1))

−R′212(k1, q1)e4i(z2−z1)S(k1,q1)e
2iq1(z1+

2c1
c2

(z2−z1))

= R1(k1, q1)e2iq1z1

+R′2(k1, q1)e2i(z2−z1)S(k1,q1)e2iq1z′2

−R′212(k1, q1)e4i(z2−z1)S(k1,q1)e2iq1(2z′2−z1) (31)

The predicted internal multiple should be:

b3(k1, 2q1) = R′2(k1, q1)R1(k1, q1)R′2(k1, q1)e4i(z2−z1)S(k1,q1)e2iq1(2z′2−z1) (32)
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Comparing the predicted amplitude of the internal multiple with the actual amplitude of the
internal multiple, we have:

R′212(k1, q1) = T01R2R1R2T10

=
R′2(k2, q2)R1(k1, q1)R′2(k2, q2)

T01(k1, q1)T10(k1, q1)
(33)

We can see that they differed by a factor T01(k1, q1)T10(k1, q1). That is the attenuation factor
for the 1D pre-stack acoustic medium.

4.2 The ISS internal-multiple elimination algorithm for 1D pre-stack data

Now we have the attenuation factor for the 1D pre-stack acoustic medium and it lights the way
to extending the 1D normal-incidence algorithm to 1D pre-stack data. Below shows the 1D pre-
stack acoustic algorithm. In the 1D pre-stack elimination algorithm, due to the angle-dependent
reflection coefficients, we can no longer just integrate the data in the k-z domain to get the reflection
coefficients-we need to go to the k-q domain in which each pair k-q corresponds to a reflection coef-
ficient. The differences between the 1D pre-stack algorithm and the 1D normal incidence algorithm
are that the 1D pre-stack algorithm has one more variable k, and it uses the reflection coefficients in
the k-q domain instead of the direct integral in the k-z domain.

bIME (k, 2q) =
∫ ∞
−∞

dze2iqzb1(k, z)
∫ z−ε1

−∞
dz′e−2iqz′F [b1(k, z′)]

∫ ∞
z′+ε2

dz′′e2iqz′′b1(k, z′′) (34)

F [b1(k, z)] =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dz′dq′

× e−iq′zeiq′z′b1(k, z′)

[1− ∫ z′−ε−∞ dz′′b1(k, z′′)eiq′z′′
∫ z′′+ε
z′′−ε dz

′′′g∗(k, z′′′)e−iq′z′′′ ]2[1− | ∫ z′+εz′−ε dz
′′g(k, z′′)eiq′z′′ |2]

(35)

g(k, z) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

dz′dq′
e−iq′zeiq′z′b1(k, z′)

1− ∫ z′−ε−∞ dz′′b1(k, z′′)eiq′z′′
∫ z′′+ε
z′′−ε dz

′′′g∗(k, z′′′)e−iq′z′′′
(36)

5 A numerical test for synthetic elastic PP data

We test the 1D pre-stack internal multiple elimination algorithm for an four-reflector elastic model
shown in figure 7. Figure 8 shows the PP data generated from this model by reflectivity method. Fig-
ure 9 and figure 10 show a section (2.8s-3.1s) of the data and attenuation and elimination prediction
results.

The left picture in figure 9 shows a section in the input data. In this section ,there are 3 major
events interfering with each other: a converted P primary, an internal multiple generated from the
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Figure 7: model

Figure 8: PP data
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Figure 9: A section of the input data and prediction. Left: input data. Middle: attenuation algorithm
prediction. Right:elimination algorithm prediction.

Figure 10: Left: primaries in the input data. Middle: data after internal multiples being attenuated.
Right:data after internal multiples being eliminated.

first reflector and another internal multiple generated from the third reflector. The middle picture in
figure 9 shows the attenuation algorithm predicted internal multiples, it clearly shows the predicted
internal multiples have correct time and approximate amplitude. The right picture in figure 9 shows
the elimination algorithm prediction, the time is correct and the amplitude is more accurate. The
left picture in figure 10 shows the primaries in the data. (Because it is a synthetic test, we can
generate only the primaries and use them as a benchmark.) The middle picture in figure 10 shows
the result by subtracting the attenuation algorithm prediction from the data. The internal multiples
has been reduced, but there still remains residues. The right picture in figure 10 shows the result
by subtracting the elimination algorithm prediction from the data. We can see that the multiples
has been (almost) completed eliminated and the primary is recovered. (Note that there is still some
small residues in the near offset due to the inaccuracy of numerical Hankel transform.)

6 A limitation of this elimination algorithm and an algorithm to address the limita-
tion

There is a limitation of this elimination algorithm, that is, the primaries in the reflection data that en-
ters the algorithm provides that elimination capability, automatically without requiring the primaries
to be identified or in any way separated. The other events in the reflection data, that is, the internal
multiples, may alter the amplitude and need assist to completely eliminate the internal multiples.
That is a limitation of this elimination algorithm. To deal with this limitation, we can first use ISS
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internal multiple attenuation algorithm prediction (b3) to attenuate the internal multiples in the data
(b1) and then put the subtracted result, i.e., b1 + b3, which contains primaries and attenuated internal
multiples, into the ISS internal multiple elimination algorithm and predict internal multiples with
more accurate amplitude. (Note that in the numerical test, this limitation has very small affect on
the prediction, thus we do not need to consider addressing this limitation in this test. However, for
certain situation, we need to consider this limitation.)

7 Conclusion

The new ISS internal multiple elimination algorithm is a part of the three-pronged strategy which is
especially relevant and provide value when primaries and internal multiples are proximal to and/or
interfere with each other in both on-shore and off-shore data. We derived this elimination algorithm
from a reverse engineering approach and use it as a guide to find the internal multiple elimination
terms in the ISS. In this paper, we discussed the 1D pre-stack ISS internal multiple elimination
algorithm for all first-order internal multiples from all reflectors and tested this algorithm with an
elastic synthetic PP data. The encouraging result shows that this ISS internal multiple elimina-
tion algorithm can predict more accurate amplitude of the internal multiples than the attenuation
algorithm.

This reverse engineering approach launched by understanding the properties of the ISS attenu-
ation algorithm, and in 1D, reverse engineering a solution, was based on the input being primaries.
The primaries in the reflection data that enters the algorithm provide that elimination capability, au-
tomatically without our requiring the primaries to be identified or in any way separated. The other
events in the reflection data, that is, the internal multiples, will not be helpful in this elimination
scheme. This can be a limitation and can sometimes have significant affect on the prediction. We
also provide an algorithm to address this limitation in the last section.
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Appendix A: Derivation of the algorithm for the elimination of all first-order in-
ternal multiples from all reflectors in a 1D medium

The algorithm is given by:

F [b1(z)] =
b1(z)

[1− (
∫ z+ε
z−ε dz

′g(z′))2][1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)]2

g(z) =
b1(z)

1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)

with

b1(z) =R1δ(z − z1) +R′2δ(z − z2) +R′3δ(z − z3) + · · ·+R′nδ(z − zn) + · · ·
g(z) =R1δ(z − z1) +R2δ(z − z2) +R3δ(z − z3) + · · ·+Rnδ(z − zn) + · · ·

(
∫ z+ε
z−ε dz

′′g(z′′) is a function of z)

First Let us calculate
∫ z+ε
z−ε dz

′′g(z′′) for the given g(z):

∫ z+ε

z−ε
dz′′g(z′′) =

∫ z+ε

z−ε
dz′′[R1δ(z′′ − z1) +R2δ(z′′ − z2) + · · ·+Rnδ(z′′ − zn) + · · · ]

=
∫ ∞
−∞

dz′′[R1δ(z′′ − z1) +R2δ(z′′ − z2) + · · ·+Rnδ(z′′ − zn) + · · · ]

×H(z′′ − (z − ε))H((z + ε)− z′′)
=R1H(z1 − (z − ε))H((z + ε)− z1) +R2H(z2 − (z − ε))H((z + ε)− z2)

+ · · ·+RnH(zn − (z − ε))H((z + ε)− zn) + · · ·
=R1H((z1 + ε)− z)H(z − (z1 − ε)) +R2H((z2 + ε)− z)H(z − (z2 − ε))

+ · · ·+RnH((zn + ε)− z)H(z − (zn − ε)) + · · ·

(
∫ z+ε

z−ε
dz′′g(z′′))2

=R2
1H((z1 + ε)− z)H(z − (z1 − ε)) +R2

2H((z2 + ε)− z)H(z − (z2 − ε))
+ · · ·+R2

nH((zn + ε)− z)H(z − (zn − ε)) + · · ·

b1(z′)
∫ z′+ε

z′−ε
dz′′g(z′′)

=R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) +R3R
′
3δ(z

′ − z3) + · · ·+RnR
′
nδ(z

′ − zn) + · · ·
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∫ z−ε

−∞
dz′b1(z′)

∫ z′+ε

z′−ε
dz′′g(z′′)

=
∫ z−ε

−∞
dz′[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=
∫ ∞
−∞

dz′H((z − ε)− z′)[R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=R2
1H((z − ε)− z1) +R2R

′
2H((z − ε)− z2) + · · ·+RnR

′
nH((z − ε)− zn) + · · ·

=R2
1H(z − (z1 + ε)) +R2R

′
2H(z − (z2 + ε)) + · · ·+RnR

′
nH(z − (zn + ε)) + · · ·

Now we can prove the first part of the equation:

F [b1(z)]

=
b1(z)

[1− (
∫ z+ε
z−ε dz

′g(z′))2][1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)]2

=
b1(z)

[1−R2
1H((z1 + ε)− z)H(z − (z1 − ε))− · · · ][1−R2

1H(z − (z1 + ε))−R2R′2H(z − (z2 + ε))− · · · ]2

=
R1

1−R2
1

δ(z − z1) +
R′2

(1−R2
1)2(1−R2

2)
δ(z − z2) + · · ·

+
R′n

(1−R2
1)2(1−R2

2)2 · · · (1−R2
n−1)2(1−R2

n)
δ(z − zn) + · · ·

=
R1

AFj=1
δ(z − z1) +

R′2
AFj=2

δ(z − z2) + · · ·+ R′n
AFj=n

δ(z − zn) + · · ·

For the second part of the equation, we have:

g(z) =
b1(z)

1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)

b1(z′)
∫ z′+ε

z′−ε
dz′′g(z′′)

=R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) +R3R
′
3δ(z

′ − z3) + · · ·+RnR
′
nδ(z

′ − zn) + · · ·

∫ z−ε

−∞
dz′b1(z′)

∫ z′+ε

z′−ε
dz′′g(z′′)

=
∫ z−ε

−∞
dz′[R2

1δ(z
′ − z1) +R2R

′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=
∫ ∞
−∞

dz′H((z − ε)− z′)[R2
1δ(z

′ − z1) +R2R
′
2δ(z

′ − z2) + · · ·+RnR
′
nδ(z

′ − zn) + · · · ]

=R2
1H((z − ε)− z1) +R2R

′
2H((z − ε)− z2) + · · ·+RnR

′
nH((z − ε)− zn) + · · ·

=R2
1H(z − (z1 + ε)) +R2R

′
2H(z − (z2 + ε)) + · · ·+RnR

′
nH(z − (zn + ε)) + · · ·
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b1(z)

1− ∫ z−ε−∞ dz′b1(z′)
∫ z′+ε
z′−ε dz

′′g(z′′)

=R1δ(z − z1) +
R′2

1−R1R1
δ(z − z2) +

R′3
1−R1R1 −R′2R2

δ(z − z3) + · · ·

+
R′n

1−R1R1 −R′2R2 − · · · −R′n−1Rn−1
δ(z − zn)

=R1δ(z − z1) +R2δ(z − z2) +R3δ(z − z3) + · · ·+Rnδ(z − zn) + · · ·
=g(z)

Thus the second equation is proved.

In the derivation we used:Ri = R′i
1−R1R1−R′2R2−···−R′i−1Ri−1

It can be proved:

Ri =
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)(1−R2

i−1)

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)− (1−R2

1)(1−R2
2) · · · (1−R2

i−2)R2
i−1

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)− (1−R2

1)(1−R2
2) · · · (1−R2

i−2)Ri−1Ri−1

=
R′i

(1−R2
1)(1−R2

2) · · · (1−R2
i−2)−R′i−1Ri−1

=
R′i

1−R1R1 −R′2R2 − · · · −R′i−1Ri−1

Appendix B: Fourier transform of the data from the frequency-space domain to
the frequency-wavenumber domain

D(xs, xg, ω) =
1

2π

∫ ω/c

−ω/c
dk′s

e−ik′sxs

2iq′s
R(k′s, q

′
s)e

ik′sxge2iq′sz1 (B-1)

D(ks, xg, ω) =
1

2π

∫ ∞
−∞

dxse
iksxs

∫ ω/c

−ω/c
dk′s

e−ik′sxs

2iq′s
R(k′s, q

′
s)e

ik′sxge2iq′sz1 (B-2)

=
1

2π

∫ ω/c

−ω/c

∫ ∞
−∞

dxse
i(ks−k′s)xsdk′s

R(k′s, q′s)eik
′
sxge2iq′sz1

2iq′s
(B-3)

=
1

2π

∫ ω/c

−ω/c
dk′sδ(ks − k′s)

R(k′s, q′s)eik
′
sxge2iq′sz1

2iq′s
(B-4)

=
R(ks, qs)eiksxge2iqsz1

4πiqs
(−ω/c < ks < ω/c) (B-5)
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D(ks, kg, ω) =
∫ ∞
−∞

dxge
−ikgxgR(ks, qs)eiksxge2iqsz1

4πiqs
(−ω/c < ks < ω/c) (B-6)

= δ(ks − kg)R(ks, qs)e2iqsz1

4πiqs
(−ω/c < ks < ω/c) (B-7)

(B-8)
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An internal-multiple elimination algorithm for all first-order internal multiples for a 1D earth
Yanglei Zou, Arthur B. Weglein, M-OSRP/Physics Dept./University of Houston

SUMMARY

The ISS (Inverse-Scattering-Series) internal-multiple attenua-
tion algorithm (Araújo et al. (1994),Weglein et al. (1997) and
Weglein et al. (2003)) can predict the correct time and approx-
imate amplitude for all first-order internal multiples without
any subsurface information. When combined with an energy
minimization adaptive subtraction, the ISS internal multiple at-
tenuation algorithm can effectively remove internal multiples
when the primaries and internal multiples are separated, and
not overlapping or proximal. One of issues that the adaptive
subtraction is addressing is the difference between the ampli-
tude of the internal multiple and the approximate amplitude
of the attenuation algorithm prediction. However, under cer-
tain circumstances, both offshore and onshore, internal multi-
ples are often proximal to or interfering with primaries and the
criteria of adaptive subtraction may fail, since the energy can
increase when e.g., a multiple is removed from an interfering
primary. Therefore, in these situations, the task of removing
internal multiples without damaging primaries becomes more
challenging and subtle and currently beyond the collective ca-
pability of the petroleum industry. Weglein (2014) proposed
a three-pronged strategy for providing an effective response to
this pressing and prioritized challenge. One part of the strat-
egy is to develop an internal-multiple elimination algorithm
that can predict both the correct amplitude and correct time for
all internal multiples. In this paper, we provide an ISS internal-
multiple elimination algorithm for all first-order internal mul-
tiples generated from all reflectors in a 1D earth and provide
an example from an elastic synthetic data that shows the value
provided by the new algorithm in comparison with the value
provided by the internal multiple attenuation algorithm.

INTRODUCTION

The ISS (Inverse-Scattering-Series) allows all seismic process-
ing objectives, such as free-surface-multiple removal and internal-
multiple removal to be achieved directly in terms of data, with-
out any estimation of the earth’s properties. For internal-multiple
removal, the ISS internal-multiple attenuation algorithm can
predict the correct time and approximate and well-understood
amplitude for all first-order internal multiples generated from
all reflectors, at once, without any subsurface information. If
the events in the data are isolated, the energy minimization
adaptive subtraction can fix the gap between the attenuation
algorithm prediction and the internal multiples plus, e.g., all
factors that are outside the assumed physics of the subsurface
and acquisition. However, in certain situations, events often
interfere with each other in both on-shore and off-shore seis-
mic data. In these cases, the criteria of energy minimization
adaptive subtraction may fail and completely removing inter-
nal multiples becomes more challenging and beyond the cur-
rent capability of the petroleum industry.

For dealing with this challenging problem, Weglein (2014)
proposed a three-pronged strategy including

1. Develop the ISS prerequisites for predicting the refer-
ence wave field and to produce de-ghosted data.

2. Develop internal-multiple elimination algorithms from
ISS.

3. Develop a replacement for the energy-minimization cri-
teria for adaptive subtraction.

To achieve the second part of the strategy, that is, to upgrade
the ISS internal-multiple attenuation algorithm to elimination
algorithm, the strengths and limitations of the ISS internal-
multiple attenuation algorithm are noted and reviewed. The
ISS internal-multiple attenuation algorithm always attenuates
all first-order internal multiples from all reflectors at once, au-
tomatically and without any subsurface information. That is a
tremendous strength, and is a constant and holds independent
of the circumstances and complexity of the geology and the
play. However, there are two well-understood limitations of
this ISS internal-multiple attenuation algorithm

1. It may generate spurious events due to internal multi-
ples treated as subevents.

2. It is an attenuation algorithm not an elimination algo-
rithm.

The first item is a shortcoming of the leading order term (the
attenuation algorithm), when taken in isolation, but is not an is-
sue for the entire ISS internal-multiple removal capability. It is
anticipated by the ISS and higher order ISS internal multiple
terms exist to precisely remove that issue of spurious events
prediction. When taken together with the higher order terms,
the ISS internal multiple removal algorithm no longer experi-
ences spurious events prediction. Ma et al. (2012) , H. Liang
and Weglein (2012) and Ma and Weglein (2014) provided those
higher order terms for spurious events removal.

In a similar way, there are higher order ISS internal multiple
terms that provide the elimination of internal multiples when
taken together with the leading order attenuation term. There
are early discussions in Ramı́rez (2007) and Wilberth Her-
rera and Weglein (2012) find higher order terms in ISS that
can eliminate all first-order internal multiples generated at the
shallowest reflector for 1D normal incidence spike plane wave.
The next step, elimination of all first-order internal-multiples
generated from all reflectors, is a very challenging problem
even in a 1D earth. In a model with several reflectors, there is a
set of internal multiples generated by each reflector in the data,
and for different set of internal multiples, the amplitude differ-
ence between attenuation algorithm prediction and the real in-
ternal multiples is different. This elimination algorithm must
have the capability to remove all the amplitude differences be-
tween attenuation algorithm prediction and the real internal
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multiples for all sets of internal multiples. While the activ-
ity of finding higher order terms in ISS that can completely
eliminate all internal multiples is undertaken, we derived an
elimination algorithm from an alternative approach, i.e. using
reverse engineering method as a guide and a way to under-
stand the internal multiple elimination machinery in the ISS.
This elimination algorithm can predict both correct time and
amplitude of all first-order internal-multiples generated from
all reflectors in a 1D earth. And it is closely related to ISS and
preserves the following advantages of ISS attenuation

1. It only needs data, does not require any subsurface in-
formation.

2. It provides the capability to remove all first-order inter-
nal multiples without stripping.

And this elimination algorithm derived by using reverse engi-
neering method is model type dependent. (The ISS internal-
multiple attenuation algorithm is model type independent.)

ISS INTERNAL-MULTIPLE ATTENUATION ALGORITHM
AND ATTENUATION FACTOR FOR A 1D NORMAL IN-
CIDENCE SPIKE PLANE WAVE

First, we will give an introduction of the ISS internal-multiple
attenuation algorithm before we introduce the internal-multiple
elimination algorithm. The ISS internal-multiple attenuation
algorithm is first given by Araújo et al. (1994) Weglein et al.
(1997). The 1D normal incidence version of the algorithm is
presented as follows:

bIM
3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′). (1)

Where b1(z) is the water speed migration of the data of a 1D
normal incidence spike plane wave. ε1 and ε2 are two small
positive numbers introduced to avoid self interactions. bIM

3 (k)
is the predicted internal multiples in the vertical wavenumber
domain. This equation can predict the correct time and ap-
proximate amplitude of all first-order internal multiples.

The procedure of predicting a first-order internal multiple gen-
erated at the shallowest reflector is shown in figure 1. The
ISS internal-multiple attenuation algorithm automatically uses
three primaries in the data to predict a first-order internal mul-
tiple. (Note that this algorithm is model type independent and
it takes account all possible combinations of primaries that can
predict internal multiples.) From this figure we can see, ev-
ery sub event on the left hand side experiences several phe-
nomena making its way down to the earth then back to the re-
ceiver. When compared with the internal multiple on the right
hand side, the events on the left hand side have extra trans-
mission coefficients as shown in red. Multiplying all those
extra transmission coefficients, we get the AF (attenuation fac-
tor) - T01T10 for this first-order internal multiple generated at
the shallowest reflector. And all first-order internal multiples

generated at the shallowest reflector have the same attenuation
factor.

Figure 2 shows the procedure of predicting a first-order inter-
nal multiple generated at the next shallowest reflector. In this
example, the attenuation factor is (T01T10)2(T12T21).

Figure 1: an example of the attenuation factor of a first-order
internal multiple generated at the shallowest reflector, notice
that all red terms are extra transmission coefficients

Figure 2: an example of the attenuation factor of a first-order
internal multiple generated at the next shallowest reflector, no-
tice that all red terms are extra transmission coefficients

The attenuation factor for predicting a multiple generated by
the ith reflector, AFj , is given by the following:

AFj =

T0,1T1,0 ( f or j = 1)∏ j−1

i=1
(T 2

i−1,iT
2

i,i−1)Tj, j−1Tj−1, j ( f or 1< j < J)
(2)

The attenuation factor AFj can also be performed by using re-
flection coefficients:

AFj =

{
1−R2

1 ( f or j = 1)
(1−R2

1)
2(1−R2

2)
2 · · ·(1−R2

j) ( f or 1< j < J)
(3)

The subscript j represents the generating reflector, and J is the
total number of interfaces in the model. The interfaces are
numbered starting with the shallowest location. The attenu-
ation factor is directly related to the trajectory of the events,
which forms the prediction of the internal multiple.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR A 1D NORMAL INCIDENCE SPIKE PLANE WAVE

The discussion above demonstrates that all first-order internal
multiples generated at the same reflector have the same atten-
uation factor. We can observe that the attenuation factor con-
tains all transmission coefficients from the shallowest reflector
down to the reflector generating the multiple. And from the
examples(shown in figure 1 and 2) we can observe that the
middle event contains all the information about those trans-
mission coefficients. Following early discussions and work in
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Ramı́rez (2007) and Wilberth Herrera and Weglein (2012), our
idea is to modify the middle term in the attenuation algorithm
to remove the attenuation factor and make the attenuation al-
gorithm an elimination algorithm. That is from

bIM
3 (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′b1(z′)

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′) (4)

to

bIM
E (k) =

∫ ∞

−∞
dzeikzb1(z)

∫ z−ε2

−∞
dz′e−ikz′F [b1(z′)]

×
∫ ∞

z′+ε1

dz′′eikz′′b1(z′′) (5)

where F [b1(z)] is an intermediate function we need to discover.

By introducing another intermediate function g(z) in which the
amplitude of each event corresponds to a reflection coefficient,
we discovered a way to construct F [b1(z)] by using b1(z) and
g(z). After that, we find an integral equation about b1(z) and
g(z). The F [b1(z)] is first proposed in Zou and Weglein (2013):

F [b1(z) =

b1(z)

[1− (
∫ z+ε

z−ε dz′g(z′))2][1−∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)]2

(6)

g(z) =
b1(z)

1−∫ z−ε
−∞ dz′b1(z′)

∫ z′+ε
z′−ε dz′′g(z′′)

(7)

To derive the F [b1(z)] from b1(z), g(z) must first be solved
in equation (7). Thereafter, g(z) is integrated into equation
(6). Now we will show one way to solve these equations. By
iterating g(z) in (7), we can get more accurate approximation.
Substitute more accurate approximations of g(z) into F [b1(z)],
we will achieve or obtain higher orders of approximation of
the elimination algorithm which can predict correct amplitude
of first-order internal multiples generated at deeper reflectors.

ISS INTERNAL-MULTIPLE ELIMINATION ALGORITHM
FOR 1D PRESTACK DATA

The 1D prestack data is more complicated than 1D normal
incidence data in two aspects: (1) The 1D prestack data has
one more variable x (or k in wavenumber domain); (2)The re-
flection coefficients become angle dependent. Fortunately, fol-
lowing discussions and examples in Zou and Weglein (2014),
we discovered that the same elimination algorithm scheme is
still valid for 1D pre-stack data. Below shows the 1D prestack
internal-multiple elimination algorithm, where b1(k,z) is the

water speed uncollapsed Stolt migration of the data; bIM
E (k,2q)

is the elimination algorithm prediction in wavenumber domain;
F [b1(k,z)] and g(k,z) are two intermediate functions and they
are related by equation (9) and (10)

bIM
E (k,2q) =

∫ ∞

−∞
dze2iqzb1(k,z)

∫ z−ε1

−∞
dz′e−2iqz′F [b1(k,z′)]

×
∫ ∞

z′+ε2

dz′′e2iqz′′b1(k,z′′) (8)

F [b1(k,z)] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq′zeiq′z′b1(k,z′)
[1−∫ z′−ε

−∞ dz′′b1(k,z′′)eiq′z′′
∫ z′′+ε

z′′−ε dz′′′g∗(k,z′′′)e−iq′z′′′ ]2

× 1

1−|∫ z′+ε
z′−ε dz′′g(k,z′′)eiq′z′′ |2

(9)

g(k,z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
dz′dq′

× e−iq′zeiq′z′b1(k,z′)
1−∫ z′−ε

−∞ dz′′b1(k,z′′)eiq′z′′
∫ z′′+ε

z′′−ε dz′′′g∗(k,z′′′)e−iq′z′′′

(10)

NUMERICAL TESTS FOR SYNTHETIC ELASTIC PP
DATA

We test the 1D pre-stack internal multiple elimination algo-
rithm for an four-reflector elastic model shown in figure 3. Fig-
ure 4 shows the PP data generated from this model by reflec-
tivity method. Figure 5 and figure 6 show a section(2.8s-3.1s)
of the data and attenuation and elimination prediction results.

Figure 3: model

The left picture in figure 5 shows a section in the input data.
In this section ,there are 3 major events interfering with each
other: a converted P primary, an internal multiple generated
from the first reflector and another internal multiple gener-
ated from the third reflector. The middle picture in figure 5
shows the attenuation algorithm predicted internal multiples,
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Figure 4: PP data

Figure 5: A section of the input data and prediction.
Left: input data. Middle: attenuation algorithm prediction.
Right:elimination algorithm prediction.

Figure 6: Left: primaries in the input data. Middle: data after
internal multiples being attenuated. Right:data after internal
multiples being eliminated.

it clearly shows the predicted internal multiples have correct
time and approximate amplitude. The right picture in figure 5
shows the elimination algorithm prediction, the time is correct
and the amplitude is more accurate. The left picture in figure
6 shows the primaries in the data. (Because it is a synthetic
test, we can generate only the primaries and use them as a
benchmark.) The middle picture in figure 6 shows the result by
subtracting the attenuation algorithm prediction from the data.
The internal multiples has been reduced, but there still remains
residues. The right picture in figure 6 shows the result by sub-
tracting the elimination algorithm prediction from the data. We
can see that the multiples has been (almost) completed elim-
inated and the primary is recovered. (Note that there is still
some small residues in the near offset due to the inaccuracy of
numerical Hankel transform.)

A LIMITATION OF THIS ELIMINATION ALGORITHM
AND AN ALGORITHM TO ADDRESS THE LIMITA-
TION

There is a limitation of this elimination algorithm, that is, the
primaries in the reflection data that enters the algorithm pro-

vides that elimination capability, automatically without requir-
ing the primaries to be identified or in any way separated. The
other events in the reflection data, that is, the internal multi-
ples, may alter the amplitude and need assist to completely
eliminate the internal multiples. That is a limitation of this
elimination algorithm. To deal with this limitation, we can
first use ISS internal multiple attenuation algorithm prediction
(b3) to attenuate the internal multiples in the data (b1) and then
put the subtracted result, i.e., b1 +b3, which contains primaries
and attenuated internal multiples, into the ISS internal multiple
elimination algorithm to predict internal multiples with more
accurate amplitude. (Note that in the numerical test, this lim-
itation has very small affect on the prediction, thus we do not
need to consider addressing this limitation in this test. How-
ever, for certain situation, we need to consider this limitation.)

CONCLUSION

The ISS internal multiple elimination algorithm is a part of the
three-pronged strategy which is especially relevant and pro-
vide value when primaries and internal multiples are proximal
to and/or interfere with each other in both on-shore and off-
shore data. While the activity of finding higher order terms
in ISS that can completely eliminate all internal multiples in
multi-D is undertaken, we derive an elimination algorithm from
a reverse engineering approach and use it as a guide and a way
to understand the internal multiple elimination machinery in
the ISS. In this paper, we discussed the 1D pre-stack ISS in-
ternal multiple elimination algorithm for all first-order internal
multiples from all reflectors and tested this algorithm with an
elastic synthetic PP data. The result shows that this ISS inter-
nal multiple elimination algorithm can predict more accurate
amplitude of the internal multiples than the attenuation algo-
rithm.

This reverse engineering approach launched by understanding
the properties of the ISS attenuation algorithm, and in 1D,
reverse engineering a solution, was based on the input be-
ing primaries. The primaries in the reflection data that en-
ters the algorithm provide that elimination capability, automat-
ically without our requiring the primaries to be identified or in
any way separated. The other events in the reflection data, that
is, the internal multiples, will not be helpful in this elimination
scheme. This can be a limitation and can sometimes have sig-
nificant affect on the prediction. We also provide an algorithm
to address this limitation in the last section.
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Direct depth imaging without a velocity model: update and Marmousi model tests
Fang Liu and Arthur B. Weglein, Mission-Oriented Seismic Research Program, University of Houston

SUMMARY

The inverse scattering subseries for direct depth imaging with-
out a velocity model has demonstrated its viability on synthetic
and field data. The current direct depth imaging algorithm is:
(1) closed form and very fast, and (2) represents only a very
small portion of the depth imaging terms/capability within the
inverse scattering (ISS) series. In this paper, we demonstrated
the effectiveness of the current depth imaging algorithm on the
Marmousi data set. Equally important, we witness the promise
and potential of direct depth imaging algorithm from the in-
verse scattering series and its moving closer to belonging in
our seismic depth imaging toolbox, taking its place alongside
its siblings for free surface and internal multiple removal.

THEORY

In the inverse scattering series (Weglein et al., 2000, 2002), the
perturbation α is defined as the difference between the actual
and reference velocity: 1

c2 = 1
c2

0
(1−α), where c is the spatially

varying actual velocity, c0 (in this example just homogeneous
water velocity for the entire space) is the reference velocity. In
2D, both α and c are functions of depth z and lateral variable
x. The perturbation α is separated into an infinite series in
terms of their order of dependence in terms of the data at the
measurement surface:

α(x,z) = α1 +α2 +α3 + · · · (1)

where the first term α1 is essentially equivalent to prestack FK
migration.

α1(km,kz,θ) =−4
qgqs

ω2/c2
0

D(km,kz,ω) ,

ω =
c0kz

2

s
k2

z + k2
m

k2
z cos2 θ − k2

m sin2 θ
.

(2)

Seismic data, originally a function of time t, xs (source lateral
coordinate) and xg (receiver lateral coordinate), are sorted into
xm (mid-point) and xh (offset) domain, and are then Fourier
transformed into km (the Fourier conjugate of xm), kh (the Fourier
conjugate of xh) and ω (temporal frequency) domain to com-
pute the data D in the right-hand-side of equation (2). In the
calculation, we choose km = kg−ks, kh = kg +ks = 2sinθω/c0.
And equation (2) can be Fourier transformed from km to x, and
kz to z to have α1 in the spatial (x,z) domain. Note that al-
though α is not a function of the parameter θ , its Born ap-
proximation α1 is. This is the reason why specular reflections
are not flat in the angle (or common-image) gather domain, in

other words, are imaged at different depth for different angles
θ , when employing a constant velocity FK migration.

The second term α2 can be computed from the first term α1 as:

α2(x,z) = α21 +α22 +α23, (3)

where its first two terms are:

α21 =−α2
1 (x,z)

2
− ∂α1(x,z)

2∂ z

zZ
−∞

α1(x,z′)dz′,

α22 =
∂α1(x,z)

2∂x

zZ
−∞

dz′
z′Z

−∞

dz′′
∂α1(x,z′′)

∂x
.

(4)

And the third term is expressed in the k domain as:

eα23(k,z) =
1

8π2

∞Z
−∞

eα1(
k
2
− k′,z′)

z′Z
−∞

eα1(
k
2

+ k′,z′′)

× eξ2

„
k,k′,

z′+ z′′

2
− z,

z′− z′′

2

«
dz′dz′′,

(5)

where eξ2(k,k′,ε0,ε1) =
∞R
−∞

ei(ε0+ε1)kz(i(k2
z + k2

m)/(u1)ei∆ψ −

ikz + ε1a1/2), a1 = k2− 4k′2, u1 =
q

k2
z +a1, ∆ψ = ε1(u1−

kz).

So far the second term of α21 (the only term in α2 that does not
vanish if the earth has no lateral variation) has been incorpo-
rated into the leading-order imaging subseries (LOIS) (Shaw,
2005) and higher-order imaging subseries (HOIS). The other
two terms α22 and α23 will vanish if the earth does not vary
laterally, in other words, laterally exclusive (LE) terms.

αLOIS(x,z) = α1

0@x,z− 1
2

zZ
−∞

α1(x,z′)dz′
1A , (6)

αHOIS(x,z+
1
2

zZ
−∞

dz′
α1(x,z′)

cos2 θ − α1(x,z′)
4

) = α1(x,z). (7)

Both LOIS and HOIS are task-specific subseries for seismic
imaging and aim to further migrate primaries in α1 to their ac-
tual location without updating the migration velocity c0. If the
imaging subseries has achieved the actual depth of a reflec-
tor, which is independent of the angle θ , the reflector image
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should be migrated to the same depth for all angles, or in other
words, flattened. This is how can the flatness of events in the
angle gather be used as a benchmark for the effectiveness of
our algorithm, although the flatness of events does not enter
the procedure anywhere.

THE MARMOUSI MODEL AND OUR FINITE-
DIFFERENCE MODELING PROCEDURE

The Marmousi model is one of the well know benchmark seis-
mic imaging challenges. The original model is sampled ev-
ery 1.25(m) in both the vertical and the horizontal directions.
In the modeling procedure we resample it at 5(m) and boost
the the wave speed of a low velocity region to water veloc-
ity (1500m/s) to accomodate the coarser 5(m) sampling. In
the framework set up in Weglein et al. (2000, 2002), α1 is the
first term in the seismic imaging subseries and is essentially
equivalent to a prestack Stolt migration with constant veloc-
ity. In this note, α1 (the first term of inverse scattering series)
and the subsequent higher-order imaging subseries are shown.
For this model with very big velocity contrast (the highest ve-
locity being 4700m/s vs the reference 1500m/s water speed)
and large lateral variation, the idea of purposeful perturbation
(see Weglein (2006) for detail) observed in all previous simpler
imaging challenges still holds for the much more complicated
Marmousi model.

There are hundreds of reflectors (horizons) in the Marmousi
model, to display all of them at the same time will block a
significant portion of the data. Therefore in each figure we
selected only the major reflectors for display.

The original Marmousi model (see Figure 1) has a small region
of very low velocity. Since the wavelength of seismic wave is
shorter in the low velocity zone, the extreme low velocity re-
quires very fine sampling in both the x and z directions. Since
this low velocity zone is located in the portion of the model
with very mild lateral variation, the low velocity contrast by it-
self (without large lateral variation) was not a major challenge
for HOIS. This modification (shown in Figure 2) does not re-
duce the imaging challenge for our direct depth imaging.

In the finite difference modeling procedure, the interval be-
tween two adjacent time step is 0.5ms, but the sampling inter-
val in the output is 2ms to follow the standard choice in seismic
data. A typical shot gather is shown in Figure 3. In the model-
ing procedure, only the P-wave velocity is used.

The wavelet used in the finite-difference procedure is the first
derivative of a Gaussian function, lacking zero frequency in-
formation. Just as our previous numerical examples in Liu
(2006) and real data example in Weglein et al. (2012), low fre-
quency is not an issue. Limited aperture, or lack of data, often
seriously compromise a lateral Fourier transform, and evapor-
ize the inherent logic between seismic events that crystalizes
in the k-domain, just as shown in internal multiple attenuation
examples.

Figure 1: The original Marmousi model. The wave speed of
the low velocity region in this model (shown by the bright zone
with x-coordinate between −6000(m) and −5000(m)) will be
boosted to water speed (1500m/s). The colored horizons are
major reflectors in the model.

Figure 2: The modified Marmousi model. The modification
happened between x = −6000m and x = −5000m where the
lateral variation is mild. The low velocity values are boosted
to water speed (1500m/s). The colored horizons are major
reflectors in the model.

Figure 3: The shot gather with the shot location: xs = 0(m).

IMAGING RESULTS

The α1 result for θ = 0 is shown in Figure 4, its correspond-
ing HOIS result is shown in Figure 5. The computational cost
from α1 to αHOIS is extremely low: 30% of FK migration, but
diffractions are not delt with since they are laterally exclusively
phenonmena expressed in terms (such as α22 and α23).

HOIS results for θ = 9◦ (Figure 6) is also shown to demon-
strate the fact that: while specular reflections are almost identi-
cal for different angle θ , diffractions swings around noticeably
for different θ . This is the reason why after summing the HOIS
image from all angles (see Figure 8), the specular reflections
are boosted and the diffractions are much reduced.

The Marmousi model is the most complicated model we had
tested on the inverse scattering based imaging, yet the same
dependendable purposefulness of the terms is observed:

1. The common-image gather becomes flat where the cor-
rect depth is achieved although the flatness of the common-
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image gather does not enter the algorithm. And the
bigger the distance from the final image to its actual
location, the bigger the curvature of the event in the
common-image gather.

2. In the common-image gather the flattening effect is
much stronger on specular reflections than on diffrac-
tions.

One surprise is that, after summing the imaging results from
all angles, the reduction of diffractions is the most effective for
the Marmousi experiment compared with all previous models
we had tested.

CONCLUSIONS

Testing the current imaging algorithm with partial capture of
the direct depth ISS imaging terms demonstrates encouraging
results on the Marmousi model data set. HOIS represents only
a small fraction of ISS imaging terms. Therefore further ISS
terms, for example HOIS+LE (Wang and Weglein, 2010) add
further imaging capability that includes terms that only con-
tribute for laterally varying media, and similarly, the laterally
exclusive term in α23 will be studied and evaluated to incor-
porate and provide a more effective and capable imaging al-
gorithm. This test is next important milestone on the road for
ISS depth imaging toolbox. The promise and potential is to
provide an accurate depth image under complex and daunting
imaging challenges, where: (1) an adequate velocity cannot be
determined and/or (2) the inability to depth image beneath a
know and complex velocity model. It will play the same role
for depth imaging that inverse scattering free surface and in-
ternal multiple removal. They are cut from the same cloth, and
will provide differential added value under the same complex
and daunting circumstances.
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Figure 4: The α1 imaging result (equivalent with FK migra-
tion with ph = 0 or kh = 0). The α1 result corresponding to
equation (2) in this paper and the first and original reference is
equation (2.22) of Liu (2006).

Figure 5: The HOIS imaging result after the calculation of α1
in Figure 4. The formula to compute this inverse scattering se-
ries image is equation (7) of this paper and the first and original
reference is equation (2.34) of Liu (2006).

Figure 6: HOIS imaging result for angle θ = 9◦.

Figure 7: A, B, and C indicate the three locations where the
common-image gather analysis in Figure 9 is carried out.
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Figure 8: The sum of all HOIS imaging results from all 101 angles between θ = 0◦ and θ = 9◦.

Figure 9: Angle gathers, from left to right: α1 at location A (x =−5000(m)), HOIS at location A; α1 at location B (x =−3000(m)),
HOIS at location B; α1 at location C (x =−1000(m)), HOIS at location.
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A direct inverse solution for AVO/FWI parameter estimation objectives
Arthur B. Weglein, M-OSRP/Department of Physics/University of Houston

Summary

A direct inverse solution is derived from the operator iden-
tity relating the change in a medium’s properties and the
commensurate change in the wavefield. The direct solu-
tion is in the form of a series, called the inverse scattering
series (ISS). Each term in the series is directly computed
in terms of the recorded data, and, without subsurface in-
formation. There are isolated task inverse scattering sub-
series that perform: free surface multiple removal, inter-
nal multiple removal, depth imaging, parameter estima-
tion and Q compensation, and each achieves its objective
directly and without subsurface information. The gen-
eral operator identity is combined with the elastic wave
equation to form a specific direct solution for changes in
elastic properties and density. This paper describes the
resulting data requirements and algorithms, a distinct ISS
parameter estimation subseries, that provides a funda-
mental framework and platform for all seismic amplitude
analysis and is directly relevant for the objectives of AVO
and FWI. A view of a balanced and appropriate role for
direct and indirect methods will be presented, as well.

Introduction

Inversion methods can be classified as direct or indirect.
An example of a direct solution is given by the solution
of the quadratic equation

ax2 + bx+ c = 0, (1)

as

x =
−b±√b2 − 4ac

2a
(2)

whereas an indirect solution could be to find x such that
(ax2 + bx+ c)2 is a minimum. Among indicators, identi-
fiers and examples of “indirect” inverse solutions are: (1)
model matching, (2) objective/cost functions, (3) search
algorithms, (4) iterative linear inversion and (5) methods
corresponding to necessary and not sufficient conditions,
e.g., CIG flatness.

The Operator Identity

We begin our discussion of direct inverse solutions with
the key operator identity mentioned above. Let L0, G0,
L, and G be the differential operators and Green’s func-
tions for the reference and actual media, respectively, that
satisfy:

L0G0 = δ LG = δ

where δ is a Dirac delta function. Define the perturbation
operator, V and the scattered wavefield, as follows:

V = L0 − L ψs = G−G0.

The relationship

G = G0 +G0V G (3)

is an operator identity that follows from

L−1 = L−1
0 + L−1

0 (L0 − L)L−1.

For modeling the wavefield, G, for a medium described
by L

L→ G L0, V → G

where the second form has L entering the modeling al-
gorithms in terms of L0 and V . Modeling using scatter-
ing theory requires a complete and detailed knowledge of
medium properties.

Direct Forward and Direct Inverse

The operator identity equation 3 can be solved for G as

G = (1−G0V )−1G0 (4)

and

G = G0 +G0V G0 +G0V G0V G0 + . . . . (5)

Equation 5 has the form of a generalized Geometric series

G−G0 = S = ar + ar2 + · · · = ar

1− r (6)

where we identify a = G0 and r = V G0 in equation 5,
and

S = S1 + S2 + S3 + . . . . (7)

The portion of S that is linear, quadratic, . . . in r are:

S1 = ar

S2 = ar2

...

and the sum is

S =
ar

1− r . (8)
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Solving equation 8 for r, produces the inverse geometric
series,

r =
S/a

1 + S/a
= S/a− (S/a)2 + (S/a)3 + . . .

= r1 + r2 + r3 + . . .

and is the simplest prototype inverse series, that is, the
inverse of the geometric series. For the seismic inverse
problem, we associate S with the measured data

S = (G−G0)ms = Data

and the forward and inverse series follow from treating
the forward solution as S in terms of V , and the inverse
solution from V in terms of S

V = V1 + V2 + . . . (9)

where Vn is the portion of V , that is nth order in the
data. Equation 8 is the forward series; and equation 9
is the inverse series. The identity, equation 3, provides
a Geometric forward series rather than a Taylor series.
In general, a Taylor series doesn’t have an inverse series;
however, a Geometric series has an inverse series. All
conventional current mainstream inversion, including it-
erative linear inversion and FWI, are based on a Taylor
series concept. Solving a forward problem in an inverse
sense is not the same as solving an inverse problem di-
rectly.

The r1, r2, . . . terms in

r = S/a− (S/a)2 + (S/a)3 + . . .

= r1 + r2 + r3 + . . .

generalize for the seismic inverse in terms of V1, V2, . . . ,
and G0, G, D = (G−G0)m as follows (see, e.g., Weglein
et al., 2003)

G0V1G0 =D

G0V2G0 =−G0V1G0V1G0 (10)

G0V3G0 =−G0V1G0V1G0V1G0

−G0V1G0V2G0 −G0V2G0V1G0

...

The operator identity for the 2D
heterogeneous elastic wave equation

We exemplify the method for a 2D elastic heterogeneous
earth. The starting point for the 3D generalization is
found in Stolt and Weglein (2012). The 2D elastic wave
equation for a heterogeneous isotropic medium is

L~u =

(
fx
fz

)
L̂

(
φP

φS

)
=

(
FP

FS

)
. (11)

~u, fx, fz are the displacement and force, in displacement
coordinates and φP , φS and FP , FS are the P and S

waves and the force components in P and S coordinates.
The operators L, L0 and V are

L =

[
ρω2

(
1 0
0 1

)
+(

∂xγ∂x + ∂zµ∂z ∂x(γ − 2µ)∂z + ∂zµ∂x
∂z(γ − 2µ)∂x + ∂xµ∂z ∂zγ∂z + ∂xµ∂x

)]
L0 =

[
ρω2

(
1 0
0 1

)
+(

γ0∂
2
x + µ0∂

2
z (γ0 − µ0)∂x∂z

(γ0 − µ0)∂x∂z µ0∂
2
x + γ0∂

2
z

)]
and

V ≡ L0 − L

=

[
aρω

2 + α2
0∂xaγ∂x + β2

0∂zaµ∂z
∂z(α

2
0aγ − 2β2

0aµ)∂x + β2
0∂xaµ∂z

∂x(α2
0aγ − 2β2

0aµ)∂z + β2
0∂zaµ∂x

aρω
2 + α2

0∂zaγ∂z + β2
0∂xaµ∂x

]
.

The quantities aρ ≡ ρ/ρ0−1, aγ ≡ γ/γ0−1, aµ ≡ µ/µ0−
1 are defined in terms of γ0, µ0, ρ0, γ, µ, ρ, the bulk
modulus, shear modulus and density in the reference and
actual media, respectively.

The forward problem is found from the identity equation 5
and the elastic wave equation 11 (in PS coordinates) as

Ĝ− Ĝ0 =Ĝ0V̂ Ĝ = Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + . . .(
D̂PP D̂PS

D̂SP D̂SS

)
=

(
ĜP0 0

0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0

0 ĜS0

)
+

(
ĜP0 0

0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0

0 ĜS0

)
×
(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0

0 ĜS0

)
+ . . .

(12)

and the inverse solution, equation 10, for the elastic equa-
tion 11 is(

D̂PP D̂PS

D̂SP D̂SS

)
=

(
ĜP0 0

0 ĜS0

)(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
(
ĜP0 0

0 ĜS0

)(
V̂ PP2 V̂ PS2

V̂ SP2 V̂ SS2

)(
ĜP0 0

0 ĜS0

)
= −

(
ĜP0 0

0 ĜS0

)(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
×
(
V̂ PP1 V̂ PS1

V̂ SP1 V̂ SS1

)(
ĜP0 0

0 ĜS0

)
. (13)

where, for example, V̂ PP = V̂ PP1 + V̂ PP2 + V̂ PP3 + . . . and
any one of the four matrix elements of V requires(

D̂PP D̂PS

D̂SP D̂SS

)
.

A few key points
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D̂PP can be determined in terms of(
V̂ PP V̂ PS

V̂ SP V̂ SS

)
and V̂ PP or V̂ PS , V̂ SP , V̂ SS require a series in(

D̂PP D̂PS

D̂SP D̂SS

)
.

That’s what the general relationship G = G0 + G0V G
requires, that is, a direct non-linear inverse solution is a
solution order by order in the data matrix (in 2D)(

D̂PP D̂PS

D̂SP D̂SS

)
.

The direct solution is not iterative linear inversion. Iter-
ative linear starts with

G0V1G0 = D, (14)

solves for V1, changes the reference medium, finds a new
L0 and G0 (and require generalized inverses of noisy ban-
dlimited data dependent operators). The next linear step
involves V ′1 ,

G′0V
′
1G
′
0 = D′ = (G−G′0)ms

L′0 = L0 − V1

L′0G
′
0 = δ

where V ′1 is the portion of V linear in the data (G−G′0)ms.
The direct inverse solution equations 9 and 13 call for
a single unchanged reference medium, for computing
V1, V2, . . . . For a homogeneous reference medium they
are obtained by an analytic inverse. The inverse to find
V1 from data, is the same inverse to find V2, V3, . . . , from
equation 10. There are no numerical inverses, no gener-
alized inverses, no inverses of matrices that contain noisy
bandlimited data.

The difference between iterative linear and the direct in-
verse of equation 13 is much more substantive and seri-
ous than merely a different way to solve G0V1G0 = D,
equation 14, for V1. If equation 14 is our entire basic the-

ory, you can mistakenly think that D̂PP = ĜP0 V̂
PP
1 ĜP0

is sufficient to update D̂PP = ĜP0
′V̂ PP1

′ĜP0
′. That step

loses contact with and violates the basic operator identity
G = G0 +G0V G for the elastic wave equation. That’s as
serious as considering problems involving a right triangle
and violating the Pythagorean theorem in your method.

That is, iteratively updating PP data with an elastic
model violates the basic relationship between changes in
a medium, V and changes in the wavefield, G − G0 for
the simplest elastic earth model.

This direct inverse method provides a platform for am-
plitude analysis, AVO and FWI. It communicates when a
“FWI” method should work, in principle. Iteratively in-
verting multi-component data has the correct data but

doesn’t corresponds to a direct inverse algorithm. To
honor G = G0 +G0V G, you need both the data and the
algorithm that direct inverse prescribes. Not recogniz-
ing the message that an operator identity and the elastic
wave equation unequivocally communicate is a fundamen-
tal and significant contribution to the gap in effectiveness
in current AVO and FWI method and application (equa-
tion 13). This analysis generalizes to 3D with P , Sh, and
Sv data.

There’s a role for direct and indirect methods in practical
real world application. Indirect methods are to be called
upon for recognizing that the world is more complicated
than the physics that we assume in our models and meth-
ods. For the part of the world that you are capturing in
your model (and methods) nothing compares to direct
methods for clarity and effectiveness. The listed refer-
ences provide detail and examples. An optimal indirect
method would seek to satisfy a cost function that derives
from a property of the direct method. In that way the
indirect and direct method would be aligned and cooper-
ative for accommodating the part of the world described
by your physical model and the part that is outside.

Conclusions

This paper: (1) describes the direct inverse parameter es-
timation algorithm (subseries) and its data requirements
(2) compares that direct inversion with current FWI ap-
proaches; and (3) will provide an application for 4D.
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A comparison of the inverse scattering series direct non-linear
inversion and the iterative linear inversion for parameter estimation

across a single horizontal reflector

Jinlong Yang and Arthur B. Weglein

Abstract

The inverse scattering series (ISS) can achieve all seismic processing objectives directly
without requiring any subsurface information. There are isolated task-specific subseries that
derived from the ISS, which can perform free-surface multiple removal, internal multiple re-
moval, depth imaging, parameter estimation, and Q compensation. Each isolated subseries as-
sumes that only one task is performed. In this report, we will focus on the parameter estimation
subseries and reduce it to a 1D normal incidence wave on a 1D acoustic earth where a single
measured pressure wave is the input data. Under that very limited and focused circumstance,
we are examining the difference between the iterative linear inverse and the direct inverse rep-
resented by the ISS parameter estimation subseries. A direct comparison is realizable in this
specific example. The iterative approach shown in this example doesn’t incorporate practical
issues, e.g., the numerical noise and the different generalized inverses at each step. However,
the ISS method performs as it does in practice with an analytic and unchanged inverse at every
step. The comparison tests their convergence and the rate of convergence for different velocity
contrasts. The rate of convergence of the ISS inversion method is analytically and numerically
studied. When the reflection coefficient R < 0.618, the ISS inversion subseries monotoni-
cally term-by-term improves the estimation of medium properties; when R > 0.618, the ISS
inversion subseries still converges, but not monotonically. Numerical tests show that when
the velocity contrast is small, both inversion methods converge and the ISS inversion method
converges faster than the iterative inversion method. When the velocity contrast increases, the
iterative inversion method can not be computable and the ISS inversion method always con-
verges. Therefore, for the simplest situation, the iterative linear inversion is not equivalent to
the ISS direct non-linear solution. For more complicated circumstances, the difference is much
greater, not just on the algorithms, but also on data requirements.

1 Introduction

The objective of seismic inversion is to estimate the medium properties of the subsurface from
the recorded wavefield at the surface. Inversion methods can be classified as a direct method or
an indirect method. A direct inversion method can solve an inverse problem (as its name suggests)
directly depending on the algorithm and its data requirements without searching or model matching.
On the other hand, an indirect inversion method solves the inverse problem through indirect ways
(Weglein, 2015a): (1) model matching, (2) objective/cost functions, (3) searching algorithms, (4)
iterative linear inversion, and (5) methods corresponding to necessary but not sufficient conditions,
e.g., common image gather flatness. For example, a quadratic equation ax2 + bx + c = 0 can
be solved through a direct method as x = −b±√b2−4ac

2a , or it can be solved by an indirect method
searching for x such that (ax2 + bx+ c)2 is a minimum.

A direct inverse solution for parameter estimation can be derived from an operator identity that
relates the change in a medium’s properties and the commensurate change in the wavefield. This
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operator identity is a general inversion methodology and can accommodate any model-type, for
example, acoustic, elastic, anisotropic, heterogeneous, inelastic. The direct inverse solution is in the
form of a series, referred to as the inverse scattering series (Weglein et al., 2003). It can achieve
all processing objectives within a single framework without requiring any subsurface information.
There are isolated-task inverse scattering subseries derived from the ISS, which can perform free-
surface multiple removal, internal multiple removal, depth imaging, parameter estimation, and Q
compensation. The direct inverse solution (Weglein et al., 2003, 2009) provides a solid framework
and firm math-physics foundation for the data requirements and algorithms to solve the inverse
problem. For an elastic heterogeneous medium, Zhang and Weglein (2006) shows that the direct
inverse requires multi-component/PS (P-component and S-component) data and prescribes how that
data are utilized for a direct parameter estimation solution.

In this paper, we focus on analyzing and examining the ISS inversion subseries for parameter
estimation. The distinct issues of: (1) data requirements, (2) model-type, and (3) inversion algo-
rithm for the direct inverse are all important (Weglein, 2015b). For a normal incident wave on a
single horizontal reflector in an acoustic medium, we can isolate and focus on the algorithmic dif-
ference when mode-type agrees and there is the same data, a single reflector and acoustic P wave.
Under that very limited and focused circumstance, a direct comparison is realizable and the iterative
approach doesn’t incorporate practical issues, e.g., the numerical noise and the different generalized
inverses at each step. However, the ISS method performs as it would in practice with an analytic
and unchanged inverse at every step. The numerical results show a comparison between the ISS
direct non-linear inversion and the iterative inversion (Yang and Weglein, 2015) on a 1D one pa-
rameter model with a single horizontal reflector, where the velocity is assumed to be known above
the reflector and unknown below the reflector. Their convergence and the rate of convergence will
be discussed and studied. In the ISS inversion subseries, each term of the series works towards the
final goal. Sometimes when more terms in the series are included, the estimation may be worse
locally,but in fact it is purposeful and essential in the contribution towards convergence and the
final goal. This property has also been indicated by Carvalho (1992) in the free-surface multiple
elimination subseries, e.g., what appears to make a second-order free-surface multiple larger with
a first-order free-surface algorithm is actually preparing the second-order multiple to be removed
by the higher-order terms. This simple example provides a guide when we move on to the more
complicated elastic world.

The report is arranged as follows: First, the ISS direct inversion method is discussed. Second,
the direct inversion is presented in the 2D heterogeneous elastic medium. Third, the ISS direct
inversion and the iterative linear inversion are examined and compared in a 1D acoustic medium.
Finally, we offer a discussion and conclusions.

2 Theory

The direct inverse solution (Weglein et al., 2003; Zhang, 2006) is derived from the operator identity
that relates the change in a medium’s properties and the commensurate change in the wavefield. Let
L0, G0, L, and G be the differential operators and Green’s functions for the reference and actual
media, respectively, that satisfy:

L0G0 = δ and LG = δ,
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where δ is a Dirac δ-function. We define the perturbation operator, V , and the scattered wavefield,
ψs, as follows:

V ≡ L0 − L and ψs ≡ G−G0.

2.1 The operator identity

The relationship (called the Lippmann-Schwinger or scattering theory equation)

G = G0 +G0V G (1)

is an operator identity that follows from

L−1 = L−1
0 + L−1

0 (L0 − L)L−1.

For forward modeling the wavefield, G, for a medium described by L is given by

L→ G or L0, V → G

where the second form has L entering the modeling algorithms in terms of L0 and V . Modeling
using scattering theory requires a complete and detailed knowledge of medium properties.

2.2 Direct forward series and direct inverse series

The operator identity equation 1 can be solved for G as

G = (1−G0V )−1G0, (2)

or

G = G0 +G0V G0 +G0V G0V G0 + . . . . (3)

Equation 3 has the form of a generalized geometric series

G−G0 = S = ar + ar2 + · · · = ar

1− r , (4)

where we identify a = G0 and r = V G0 in equation 3, and

S = S1 + S2 + S3 + . . . . (5)

The portions of S that are linear, quadratic, . . . in r are:

S1 = ar,

S2 = ar2,

...

and the sum is

S =
ar

1− r . (6)



374

Solving equation 6 for r, produces the inverse geometric series,

r =
S/a

1 + S/a
= S/a− (S/a)2 + (S/a)3 + . . .

= r1 + r2 + r3 + . . . .

This is the simplest prototype of an inverse series, i.e., the inverse of the geometric series. For the
seismic inverse problem, we associate S with the measured data

S = (G−G0)ms = Data,

and the forward and inverse series follow from treating the forward solution as S in terms of V , and
the inverse solution as V in terms of S. The inverse series assumes

V = V1 + V2 + V3 + . . . , (7)

where Vn is the portion of V that is nth order in the data. The identity (equation 1) provides a
geometric forward series rather than a Taylor series. In general, a Taylor series doesn’t have an in-
verse series; however, a geometric series has an inverse series. All conventional current mainstream
inversion methods, including iterative linear inversion and FWI, are based on a Taylor series con-
cept. Solving a forward problem in an inverse sense is not the same as solving an inverse problem
directly.

In terms of the expansion of V in equation 7, andG0,G,D = (G−G0)ms, the inverse scattering
series (Weglein et al., 2003) can be obtained as

G0V1G0 =D, (8)

G0V2G0 =−G0V1G0V1G0, (9)

G0V3G0 =−G0V1G0V1G0V1G0

−G0V1G0V2G0 −G0V2G0V1G0, (10)
...

The inverse scattering series provides a direct method for obtaining the subsurface information by
inverting the series order-by-order to solve for the perturbation operator V , using only the measured
data D and a reference Green’s function G0, for any type of medium.

2.3 The operator identity in a 2D heterogeneous elastic medium

The method for a 2D elastic heterogeneous earth is exemplified. The starting point for the 3D gen-
eralization is found in Stolt and Weglein (2012). The 2D elastic wave equation for a heterogeneous
isotropic medium (Zhang, 2006) is

L~u =
(
fx
fz

)
and L̂

(
φP

φS

)
=
(
FP

FS

)
, (11)

where ~u, fx, and fz are the displacement and forces in displacement coordinates and φP , φS and
FP , FS are the P and S waves and the force components in P and S coordinates. The operators L,
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L0 and V are

L =
[
ρω2

(
1 0
0 1

)
+
(

∂xγ∂x + ∂zµ∂z ∂x(γ − 2µ)∂z + ∂zµ∂x
∂z(γ − 2µ)∂x + ∂xµ∂z ∂zγ∂z + ∂xµ∂x

)]
,

L0 =
[
ρω2

(
1 0
0 1

)
+
(

γ0∂
2
x + µ0∂

2
z (γ0 − µ0)∂x∂z

(γ0 − µ0)∂x∂z µ0∂
2
x + γ0∂

2
z

)]
,

V ≡ L0 − L =
[

aρω
2 + α2

0∂xaγ∂x + β2
0∂zaµ∂z

∂z(α2
0aγ − 2β2

0aµ)∂x + β2
0∂xaµ∂z

∂x(α2
0aγ − 2β2

0aµ)∂z + β2
0∂zaµ∂x

aρω
2 + α2

0∂zaγ∂z + β2
0∂xaµ∂x

]
,

where the quantities aρ ≡ ρ/ρ0 − 1, aγ ≡ γ/γ0 − 1, aµ ≡ µ/µ0 − 1 are defined in terms of the
bulk modulus, shear modulus and density (γ0, µ0, ρ0, γ, µ, ρ) in the reference and actual media,
respectively.

The forward problem is found from the identity equation 3 and the elastic wave equation 11 (in
PS coordinates) as

Ĝ− Ĝ0 = Ĝ0V̂ Ĝ0 + Ĝ0V̂ Ĝ0V̂ Ĝ0 + . . .(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP0 0
0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0
0 ĜS0

)
+
(
ĜP0 0
0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0
0 ĜS0

)(
V̂ PP V̂ PS

V̂ SP V̂ SS

)(
ĜP0 0
0 ĜS0

)
+ . . . (12)

and the inverse solution, equations 8-10, for the elastic equation 11 is(
D̂PP D̂PS

D̂SP D̂SS

)
=
(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)
,(

ĜP0 0
0 ĜS0

)(
V̂ PP

2 V̂ PS
2

V̂ SP
2 V̂ SS

2

)(
ĜP0 0
0 ĜS0

)
= −

(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)(
V̂ PP

1 V̂ PS
1

V̂ SP
1 V̂ SS

1

)(
ĜP0 0
0 ĜS0

)
, (13)

where V̂ PP = V̂ PP
1 + V̂ PP

2 + V̂ PP
3 + . . . and any one of the four matrix elements of V requires

the four components of the data (
D̂PP D̂PS

D̂SP D̂SS

)
.

In summary, from equation 12, D̂PP can be determined in terms of the four elements of V and
V̂ PP , V̂ PS , V̂ SP , or V̂ SS require the four components of D. That’s what the general relationship
G = G0 + G0V G requires, i.e., a direct non-linear inverse solution is a solution order-by-order in
the four matrix elements of D (in 2D).

2.4 Direct inverse and indirect inverse

The direct solution is not iterative linear inversion. Iterative linear inversion starts with equation 8.
We solve for V1 and change the reference medium iteratively. The new differential operator L′0 and
the new reference medium G′0 satisfy

L′0 = L0 − V1 and L′0G
′
0 = δ. (14)
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Through the same equation 8 with different reference background

G′0V
′

1G
′
0 = D′ = (G−G′0)ms, (15)

where V ′1 is the portion of V linear in the data (G − G′0)ms. We can continually update L′0 and
G′0, and finally solve for the perturbation operator V . The direct inverse solution equations 7 and
13 calls for a single unchanged reference medium, for computing V1, V2, . . . . For a homogeneous
reference medium they are obtained by an analytic inverse. The inverse to find V1 from data, is
the same inverse to find V2, V3, . . . , from equations 8-10. There are no numerical inverses, no
generalized inverses, no inverses of matrices that contain noisy bandlimited data.

The difference between iterative linear and the direct inverse of equation 13 is much more sub-
stantive and serious than merely a different way to solve G0V1G0 = D, equation 8, for V1. If
equation 8 is our entire basic theory, you can mistakenly think that D̂PP = ĜP0 V̂

PP
1 ĜP0 is suffi-

cient to update D̂PP = Ĝ′P0 V̂ ′PP1 Ĝ′P0 . This step loses contact with and violates the basic operator
identity G = G0 +G0V G for the elastic wave equation. That’s as serious as considering problems
involving a right triangle and violating the Pythagorean theorem in your method. That is, itera-
tively updating PP data with an elastic model violates the basic relationship between changes in a
medium, V and changes in the wavefield, G−G0 for the simplest elastic earth model.

This direct inverse method provides a platform for amplitude analysis, AVO and FWI. It com-
municates when a ”FWI” method should work, in principle. Iteratively inverting multi-component
data has the correct data but doesn’t corresponds to a direct inverse algorithm. To honor G =
G0 +G0V G, you need both the data and the algorithm that direct inverse prescribes. Not recogniz-
ing the message that an operator identity and the elastic wave equation unequivocally communicate
is a fundamental and significant contribution to the gap in effectiveness in current AVO and FWI
method and application (equation 13). This analysis generalizes to 3D with P , Sh, and Sv data.

There’s a role for direct and indirect methods in practical real world applications. Indirect
methods are to be called upon for recognizing that the world is more complicated than the physics
that we assume in our models and methods. For the part of the world that you are capturing in
your model (and methods) nothing compares to direct methods for clarity and effectiveness. An
optimal indirect method would seek to satisfy a cost function that derives from a property of the
direct method. In that way the indirect and direct method would be aligned and cooperative for
accommodating the part of the world described by your physical model and the part that is outside.

2.5 The operator identity in a 1D acoustic medium

Considering a simple 1D case, the model consists of two half-spaces with acoustic velocities c0 and
c1 and an interface located at z = a as shown in Figure 1. If we put the source and receiver on the
surface, the pressure wave P (t) = Rδ(t− 2a/c0) will be recorded, where the reflection coefficient
R = c1−c0

c1+c0
. Without considering the imaging issue, R is the only input to the ISS and the iterative

inversion methods. Choosing an acoustic whole-space with velocity c0 as the reference medium,

the perturbation V (Weglein et al., 2003) can be expanded as

V (z) =
ω2

c2
0

− ω2

c2(z)
=
ω2

c2
0

(1− c2
0

c2(z)
) = k2

0α(z), (16)
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Figure 1: 1D acoustic model with velocities c0 over c1

where ω is the angular frequency, c(z) is the local acoustic velocity, k0 = ω/c0, and α(z) ≡
1 − c20

c2(z)
. Depending on V , α(z) can be expanded as a series in terms of data, α(z) = α1(z) +

α2(z) + α3(z) + · · · . Thus, we have

V1 = k2
0α1, V2 = k2

0α2, · · · . (17)

From the inverse scattering series (Equations 8-10), Shaw et al. (2004) isolated the leading order
imaging subseries and the direct non-linear inversion subseries.

In this section, we will focus on studying the convergence properties of the ISS inversion sub-
series. The inversion only terms isolated from the inverse scattering series (Zhang, 2006; Li, 2011)
are

α(z) = α1(z)− 1
2
α2

1(z) +
3
16
α3

1(z) + · · · . (18)

For a 1D normal incidence case, we invert G0 of the linear equation (8) and obtain,

α1(z) = 4
∫ z

−∞
D(z′)dz′, (19)

where z′ = c0t/2. Inserting data D gives

α1 = 4R, (20)

where the reflection coefficient R = c1−c0
c1+c0

. Substituting α1 into equation (18), the ISS direct non-
linear inversion subseries in terms of R can be written as

α = 4R− 8R2 + 12R3 + · · · = 4R
∞∑
n=0

(n+ 1)(−R)n. (21)

After solving for α, the inverted velocity c(z) can be obtained through c1 = c0/
√

1− α (equation
16).

Considering the convergence property of the series for α or the inversion subseries, we can
calculate the ratio test, ∣∣∣∣αn+1

αn

∣∣∣∣ =
∣∣∣∣(n+ 2)(−R)n+1

(n+ 1)(−R)n

∣∣∣∣ =
∣∣∣∣n+ 2
n+ 1

R

∣∣∣∣ . (22)
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If lim
n→∞

∣∣∣αn+1

αn

∣∣∣ < 1, this subseries converges absolutely. That is

|R| < lim
n→∞

n+ 1
n+ 2

= 1. (23)

Therefore, the ISS direct non-linear inversion subseries converges when the reflection coefficient
|R| is less than 1, which is always true. Hence, for this example, the ISS inversion subseries will
converge under any velocity contrasts between the two media.

For the iterative linear inversion, we will update the reference velocity c′0 = c0/
√

1− α1 by
using α1 = 4R. Then, the new linear inversion velocity is calculated by α′1 = 4R′, where R′ =
c1−c′0
c1+c′0

. The same procedure will be applied iteratively until we achieve the final inversion result.

3 Numerical examples for the 1D acoustic case

Numerical examples for the 1D acoustic medium case are shown in this section. First, an analytic
example for the rate of convergence of the ISS inversion subseries is examined and studied for a 1D
normal incidence case. Second, the convergence of the ISS direct inversion and iterative inversion
are examined and compared.

3.1 Analytic example

The rate of convergence of the estimated α or the ISS inversion subseries (equation 21) is analyt-
ically examined and studied for a 1D normal incidence case. Since α is always convergent when
R < 1, the summation of this subseries (Zhang, 2006) is

α = 4R
∞∑
n=0

(n+ 1)(−R)n = 4R
1

(1 +R)2
. (24)

If the error between the estimated and the actual α is monotonically decreasing, it means the sub-
series is a term-by-term added value improvement towards determining the actual medium proper-
ties. If this error is increasing before decreasing, it means that the estimation becomes worse before
it gets better. In fact, locally worse is purposeful and essential in the contribution towards conver-
gence and the final goal. In other words, the error for the first order and the error for the second
order have the relation,

|α− α1 − α2| > |α− α1|, (25)

i.e.,

|4R3R2 + 2R3

(1 +R)2
| > |4R−R

2 − 2R
(1 +R)2

|. (26)

After simplification, it gives
R2 +R− 1 > 0. (27)

We can solve it and obtain the reflection coefficientR < −1−√5
2 = −1.618 orR > −1+

√
5

2 = 0.618.
Therefore, when R > 0.618, the error increases first. Similarly, if the error for the third order is
greater than that for the second order, we get R > 0.667. If the error for the fourth order is greater
than that for the third order, we obtainR > 0.721. In summary, whenR > 0.618 the error increases
and the estimated α gets worse before getting better. The dashed green line in Figure 2 shows that
when the reflection coefficient R is equal to 0.618, the error for the first order is equal to the error
for the second order. The detail of the numerical tests will be discussed in the next section.



379

Figure 2: The error (dashed green line) of estimated α at R = 0.6180 and α = 0.9443.

3.2 Numerical tests

In this section, we will examine the convergence property and the rate of convergence of α by
using the ISS inversion subseries (equation 21) and the iterative linear inversion methods for the
velocity contrast in the 1D acoustic case. In addition, the inversion results by these two methods are
discussed and compared.

In the simple 1D model (Figure 1), only one parameter (velocity) varies and a plane wave
propagates into the medium. There is only a single reflector and we assume the velocity is known
above the reflector and unknown below the reflector. We will examine and compare the convergence
of the perturbation α and the inversion results by using the ISS direct non-linear method and the
iterative linear method. In this model, we set the reference velocity c0 = 1500m/s and the lower
half space velocity c1 = 2000m/s.

Figure 3 shows the estimated α by the ISS method (green line) and the iterative inversion method
(blue line). The red line represents the actual α that is calculated from our model. The horizontal
axis represents the order of the ISS inversion subseries or the iteration numbers. The vertical axis
shows the value of α. From the estimated α, it can be seen that at the small velocity contrast,
the estimated α by ISS method becomes the actual α after about five orders calculation and the
estimated α by the iterative inversion method goes to zero as we expected, because after several
iteration, the updated model is close to and approaching to the actual model. Figure 4 represents the
velocity estimation. We can see that both methods converge and produce correct velocity after five
orders or iterations. From both Figures 3 and 4, we can see that both methods converge very fast at
the small velocity contrast and the ISS method converge faster than the iterative inversion method.
When the velocity contrast is getting bigger, the iterative inversion method can not be computable
in this example, but the ISS inversion method always converges and produces correct results (see
green line in Figures 5) after the summation of more orders of α.
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Figure 3: The estimated α at R = 0.1429by using the ISS inversion method (green line) and the
iterative inversion method (blue line). The red line shows the actual value of α = 0.4375. The
horizontal axis is the order of the ISS suberies or the iteration numbers, and the vertical axis shows
the value of α.

Figure 4: The estimated velocity by using the ISS inversion method (green line) and the iterative
inversion method (blue line).
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Figure 5: The estimated α at c1 = 4500m/s and R = 0.5000 by using the ISS inversion method.

From the dashed green line in Figures 3 and 5, at the small contrasts, the error between the esti-
mated and the actual α is monotonically decreasing, in other words, the estimation of α is always a
term-by-term added value improvement towards determine c1; when the contrast increasing (Figure
2), the error is not monotonic. The estimation of α can be worse before it gets better. However,
when it starts to add value, it is getting better when each further term is added to the series.

As the analytic calculation, when the reflection coefficientR is smaller than 0.618, this inversion
subseries gives a monotonically term-by-term added value improvement towards determining c1.
When the reflection coefficient R is equal to 0.618, the error becomes flat as shown in Figure 2.
When the reflection coefficient is larger than 0.618, the series still converges, but the estimation of
α will become worse before it gets better. From the analytic and numerical examples, we can see
that each term in the series works towards the final goal. Sometimes when more terms in the series
are included, the estimation looks worse locally, but once it starts to improve the estimation at a
specific order, the approximations never become worse again, every single term after that order will
produce an improved estimation.

As we know, the reflection coefficient R is almost always less than 0.2 in practice, so that
both the ISS method and the iterative method converge, but the ISS method converges faster than
the iterative method. Moreover, for more complicated circumstances (e.g., the elastic non-normal
incidence case), the difference between the ISS method and the iterative is much greater, not just
on the algorithms, but also on data requirements and on how the band-limited noisy nature of the
seismic data impact the inverse operators in the iterative method but not in the ISS method.

4 Conclusions

In this report, we discuss a direct inverse method, which is derived from the operator identity that
relates the change in a medium’s properties and the commensurate change in the wavefield. We
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describe the direct inversion algorithm for parameter estimation (ISS subseries) and its data require-
ments. In a specific 1D acoustic medium, we examine and compare the ISS direct non-linear inver-
sion and the iterative inversion for parameter estimation across a single horizontal reflector, where
the velocity is assumed to be known above the reflector and unknown below the reflector. The rate
of convergence of the ISS inversion method is analytically and numerically studied. From the ana-
lytic example, we show that when the reflection coefficient R < 0.618, the ISS inversion subseries
is a term-by-term improvement towards determining medium properties; when R > 0.618, the in-
version subseries still converges, but the estimation will locally be less accurate before it converges.
Numerical results show that when the velocity contrast is small, i.e., the reflection coefficient is
small, both inversion methods converge and the ISS inversion method converges faster than the iter-
ative inversion method. When velocity contrast increases, the reflection coefficient gets larger, the
iterative inversion method can not be computable and the ISS inversion method always converges.
Hence, for the simplest situation, the iterative linear inversion is not equivalent to the direct non-
linear solution provided by the inverse scattering series. For more complicated circumstances (e.g.,
the elastic non-normal incidence case), the difference is much greater, not just on the algorithms,
but also on data requirements and on how the band-limited noisy nature of the seismic data impact
the inverse operators in iterative linear inversion but not in the ISS direct inversion.
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A first comparison of the inverse scattering series non-linear inversion and the iterative linear inver-
sion for parameter estimation
Jinlong Yang∗ and Arthur B. Weglein, M-OSRP, University of Houston

SUMMARY

The inverse scattering series (ISS) direct non-linear inversion
and the iterative linear inversion for parameter estimation are
examined and compared. The convergence and the rate of con-
vergence of both the ISS inversion subseries and the iterative
inversion method are tested for different velocity contrasts on
a simple 1D one parameter acoustic model. The rate of con-
vergence of the ISS inversion method is analytically and nu-
merically studied. When the reflection coefficient R < 0.618,
the ISS inversion subseries monotonically term-by-term im-
proves the estimation of medium properties; when R > 0.618,
the ISS inversion subseries still converges, but not monotoni-
cally. Numerical tests show that when the velocity contrast is
small, both inversion methods converge and the ISS inversion
method converges faster than the iterative inversion method.
When the velocity contrast increases, the iterative inversion
method will not converge when R > 0.5, while the ISS inver-
sion method always converges.

INTRODUCTION

The objective of seismic inversion is to estimate the medium
properties of the subsurface from the recorded wavefield. Typ-
ically this begins with a chosen reference medium and the mea-
sured wavefield. Then an operator identity is called upon that
relates the difference between the medium and reference prop-
erties and the difference between the measured total wavefield
and the reference wavefield. This identity can be used to find
a direct solution to the forward problem or a direct solution to
the inverse problem for any type of medium.

If we seek the parameters of an elastic heterogeneous isotropic
subsurface, then the differential operator in the operator iden-
tity is the differential operator that occurs in the elastic, hetero-
geneous isotropic wave equation. The elastic isotropic model
is the base acceptable earth model-type for amplitude analy-
sis, for example, AVO and FWI. Taking the operator iden-
tity (called the Lippmann-Schwinger or scattering theory equa-
tion) and the elastic wave equation, we can obtain a direct in-
verse solution for the changes in elastic properties and den-
sity. The direct inverse solution specifies both the data re-
quired and the algorithm to achieve a direct solution. The
direct inverse (Zhang and Weglein, 2006; Li, 2014) requires
multi-component/PS data and prescribes how that data are uti-
lized for a direct parameter estimation solution. The direct
solution (Weglein et al., 2003, 2009) provides a solid frame-
work and firm math-physics foundation for the data require-
ment and algorithms to solve the problem that you are inter-
ested. There are many other issues that contribute to the gap
in FWI today, e.g., the need for broadband data. But starting
with and employing a framework that provides confidence of

the data and methods is a significant, fundamental, and practi-
cal contribution towards filling the gap (Weglein, 2015). Only
a direct solution can provide that clarity, confidence and ef-
fectiveness. The current industry standard FWI, using variants
of iterative linear inverse, correspondent to model matching
procedures, and iteratively linearly updating P data or multi-
component data does not correspond to, and will not produce,
a direct solution with its clarity and effectiveness.

The direct solution is in the form of a series, referred to as the
inverse scattering series (Weglein et al., 2003). It can achieve
all processing objectives within a single framework without
requiring any subsurface information. There are isolated-task
inverse scattering subseries, which can perform free-surface
multiple removal, internal multiple removal, depth imaging,
parameter estimation, and Q compensation. In this paper, we
focus on analyzing and examining the ISS inversion subseries
for parameter estimation. The distinct issues of: (1) data re-
quirements, (2) model-type, and (3) inversion algorithm for
the direct inverse are all important. For a normal incident wave
on a single horizontal reflector in an acoustic medium, we can
isolate and focus on the algorithm difference when mode-type
agrees and there is the same data, a single reflector acoustic P
wave. This allows us to focus on the algorithm issues.

A comparison between the ISS direct non-linear inversion and
the iterative inversion will be tested and shown on a 1D, one
parameter, and a single horizontal reflector model, where the
velocity is assumed to be known above the reflector and un-
known below the reflector. Their convergence and the rate
of convergence will be discussed and studied. In the ISS in-
version subseries, each term of the series works towards the
final goal. Sometimes when more terms in the series are in-
cluded, the estimation may be worse locally, but in fact it is
purposeful and essential in the contribution towards conver-
gence and the final goal. This property has also been indi-
cated by Carvalho (1992) in the free-surface multiple elimi-
nation subseries, e.g., what appears to make a second-order
free-surface multiple larger with a first-order free-surface al-
gorithm is actually preparing the second-order multiple to be
removed by the higher-order terms. This simple example pro-
vides a guide when we move on to the more complicated elas-
tic world.

THEORY

Starting from the two basic differential equations (Weglein et al.,
2003), which govern wave propagation in actual medium and
reference medium

LG = δ and L0G0 = δ (1)

where L, L0 and G, G0 are the differential operators and Green’s
functions in actual and reference medium, respectively. Defin-
ing the perturbation V = L0−L, the forward modeling series
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(Born series) can be derived

G = G0 +G0V G0 +G0V G0V G0 + · · · (2)

from the Lippmann-Schwinger equation. Expanding V as a
series

V = V1 +V2 +V3 + · · · (3)

and substituting it into the equation 2, the inverse scattering
series is obtained as

D = [G0V1G0]ms (4)

0 = [G0V2G0]ms +[G0V1G0V1G0]ms (5)
...

where D is G−G0 on the measurement surface. The inverse
scattering series provides a direct method for obtaining the
subsurface information by inverting the series order-by-order
to solve for the perturbation operator V , using only the mea-
sured data D and a reference wave field G0, for any type of
medium.

On the other hand, the iterative linear method for estimating
the perturbation operator V starts with equation 4. We solve for
V1 and change the reference medium iteratively. The new dif-
ferential operator L′0 becomes and the new reference medium
G′0 satisfies

L′0 = L0−V1 and L′0G′0 = δ . (6)

Through the same equation 4 with different reference back-
ground

G′0V ′1G′0 = D′ = (G−G′0)ms, (7)

we can continually update L′0 and G′0, and finally solve the
perturbation operator V .

Considering a simple 1D case, the model consists of two half-
spaces with acoustic velocities c0 and c1 and an interface lo-
cated at z = a as shown in Figure 1. If we choose an acoustic

0
c

incidence wave

z

x

1
c

0
c

az =

Figure 1: 1D acoustic model with velocities c0 over c1

whole-space with velocity c0 as the reference medium, the per-
turbation V (Weglein et al., 2003) can be expanded as

V (z) =
ω2

c2
0
− ω2

c2(z)
=

ω2

c2
0

(1− c2
0

c2(z)
) = k2

0α(z), (8)

where ω is the angular frequency, c(z) is the local acoustic ve-
locity, and k0 = ω/c0. Depending on V , α(z) can be expanded
as a series in terms of data, α(z) = α1(z)+α2(z)+α3(z)+ · · · .
Thus, we have

V1 = k2
0α1, V2 = k2

0α2, · · · . (9)

From the inverse scattering series (Equations 4 and 5), Shaw
et al. (2004) isolated the leading order imaging subseries and
the direct non-linear inversion subseries.

In this paper, we will focus on studying the convergence prop-
erties of the ISS inversion subseries. The inversion only terms
isolated from the inverse scattering series are

α(z) = α1(z)− 1
2

α2
1 (z)+

3
16

α3
1 (z)+ · · · . (10)

If the incidence angle is θ , Zhang (2006) showed that α1 can
be expressed as

α1(z) = 4R(θ)cos2 θH(z−a), (11)

where R is the reflection coefficient, and H represents Heav-
iside function∗. For the normal incidence case, we have R =
c1−c0
c1+c0

. When z> a,
α1 = 4R. (12)

Substituting α1 into equation (10), the ISS direct non-linear
inversion subseries in terms of R can be written as

α = 4R−8R2 +12R3 + · · ·= 4R
∞∑

n=0

(n+1)(−R)n. (13)

After solving α , the inverted velocity c(z) can be obtained
through c1 = c0/

√
1−α (equation 8).

Considering the convergence property of the series of α or the
inversion subseries, we can calculate the ratio test,∣∣∣∣αn+1

αn

∣∣∣∣= ∣∣∣∣ (n+2)(−R)n+1

(n+1)(−R)n

∣∣∣∣= ∣∣∣∣n+2
n+1

R
∣∣∣∣ . (14)

If lim
n→∞

∣∣∣αn+1
αn

∣∣∣< 1, this subseries converges absolutely. That is

|R|< lim
n→∞

n+1
n+2

= 1. (15)

Therefore, the ISS direct non-linear inversion subseries con-
verges when the reflection coefficient |R| is less than 1, which
is always true. Hence, for this example, the ISS inversion sub-
series will converge under any velocity contrasts between the
two media.

For the iterative linear inversion, we will update the reference
velocity c′0 = c0/

√
1−α1 by using α1 = 4R. Then, the new

linear inversion velocity is calculated by α ′1 = 4R′, where R′ =
c1−c′0
c1+c′0

. The same procedure will be applied iteratively until we
achieve the final inversion result.

ANALYTIC EXAMPLE

The rate of convergence of the estimated α or the ISS inversion
subseries (equation 13) is analytically examined and studied
for a 1D normal incidence case. Since α is always convergent
when R< 1, the summation of this subseries is

α = 4R
∞∑

n=0

(n+1)(−R)n = 4R
1

(1+R)2 . (16)

∗The definition of Heaviside function is: H(x) =
{

0, x < 0,
1, x≥ 0.
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If the error between the estimated and the actual α is mono-
tonically decreasing, it means the subseries is a term-by-term
added value improvement towards determining the actual medium
properties. If this error is increasing before decreasing, it means
that the estimation becomes worse before it gets better. In
other words, the error for the first order and the error for the
second order have the relation,

|α−α1−α2|> |α−α1|, (17)

i.e.,

|4R
3R2 +2R3

(1+R)2 |> |4R
−R2−2R
(1+R)2 |. (18)

After simplification, it gives

R2 +R−1> 0. (19)

We can solve it and obtain the reflection coefficient R< −1−√5
2

=−1.618 or R> −1+
√

5
2 = 0.618. Therefore, when R> 0.618,

the error increases first. Similarly, if the error for the third or-
der is greater than that for the second order, we get R> 0.667;
If the error for the fourth order is greater than that for the third
order, we obtain R > 0.721. In summary, when R > 0.618 the
error increases and the estimated α gets worse first. The green
dash line in Figure 2 shows that when the reflection coefficient
R is equal to 0.618, the error for the first order is equal to the
error for the second order. The detail of the numerical tests
will be discussed in the next section.

NUMERICAL TESTS

In this section, we will examine the convergence property and
the rate of convergence of α by using the ISS inversion sub-
series (equation 13) and the iterative linear inversion methods
to the velocity contrast in the 1D acoustic case. In addition,
the inversion results by these two methods is discussed and
compared.

Figure 2: The error (green dash line) of estimated α
at R = 0.618 and α = 0.9443.

In the simple 1D model (Figure 1), only one parameter (ve-
locity) varies and a plane wave propagates into the medium.

There is only a single reflector and we assume the velocity is
known above the reflector and unknown below the reflector.
We will compare the convergence of the perturbation α and
the inversion results by using the ISS direct non-linear method
and the iterative linear method. With the reference velocity
c0 = 1500m/s, four analytic examples with different velocity
contrasts for c1 = 2000, 3000, 4500, 9000m/s are examined.
In Figure 3, the red line represents the actual α that is calcu-

(a) c1 = 2000,R = 0.1429,α = 0.4375 (b) c1 = 3000,R = 0.3333,α = 0.7500

(c) c1 = 4500,R = 0.5000,α = 0.8889 (d) c1 = 9000,R = 0.7143,α = 0.9722

Figure 3: The estimated α: The horizontal axis is the orders
of the ISS suberies or the iterative numbers, and the vertical
axis shows the value. The red line shows the actual value of α .
The green and blue lines show the estimations of α by using
the ISS inversion method and the iterative inversion method.
The green and blue dash lines are their corresponding absolute
difference between the actual value and the estimations.

lated from our model for each velocity contrast. The horizontal
axis represents the orders of the ISS inversion subseries or the
iterative numbers. The vertical axis shows the value of α . The
green solid line represents the estimated value of α through the
ISS inversion method verse the summation of αn to nth order.
The green dash line represents the absolute value of the error
between the ISS estimated and the actual value of α . The blue
solid line represents the estimated value of α through the iter-
ative inversion method verse the iterative numbers. The blue
dash line represents the absolute value of the error between the
iterative estimated and the actual value of α .

From the estimated results of α for the different velocity con-
trasts, we can see that the smaller the contrast, the faster the
inversion results will converge as shown in Figure 3. In other
words, when the velocity contrast increases, the error of α es-
timation increases, therefore it takes more terms to deal with
the bigger contrast issue as shown in Figure 3d. Another im-
portant point is, when the velocity contrast is getting bigger,
at some point, the iterative inversion method is not convergent
(see the blue solid and dash lines in Figures 3c and 3d). From
the analysis, the iterative inversion method can not estimate the
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correct inversion result when R > 0.5, while the ISS inversion
method always produces useful results (see the green solid and
dash lines in Figures 3c and 3d). For the simple 1D one reflec-
tor example, it shows that the ISS direct non-linear inversion
subseries converges for all values of R. Comparing the errors
of α (green and blue dash lines in Figures 3a and 3b) by the
ISS inversion method and the iterative method, we can see that
at small contrast, both methods converge and the ISS inversion
method converges faster than the iterative inversion method.

From the green dash line in Figure 3, for a small contrast, the
error between the estimated and the actual α is monotonically
decreasing, in other words, the estimation of α is always a
term-by-term added value improvement towards determine c1;
when the contrast is very large (Figure 3d), the error is in-
creasing before decreasing. It means that the estimation of α
becomes worse before it gets better. However, when it starts to
add value, it getting better when each further term added to the
series. The green dash line in Figure 3 also shows that as more
terms are captured and added up, the error always approaches
zero, which means the correct estimation is always achieved.
Figures 3a, 3b and 3c show that when the reflection coefficient
R is smaller than 0.618, this inversion subseries is monoton-
ically term-by-term added value improvement towards deter-
mining c1. When the reflection coefficient R is equal to 0.618,
the error for the first order equals the error for the second order
as shown in Figure 2. When the reflection coefficient is larger
than 0.618 (Figure 3d), the series still converges, but the esti-
mation of α will become worse before it gets better. From the
analytic and numerical examples, we can see that each term in
the series works towards the final goal. Sometimes when more
terms in the series are included, the estimation looks worse lo-
cally, but once it starts to improve the estimation at a specific
order, the approximations never become worse again, every
single term after that order will produce an improved estima-
tion.

The convergence results are also presented for the velocity es-
timation as shown in Figure 4. At small velocity contrast, both
methods are convergent very fast and estimate the correct ve-
locity (Figures 4a and 4b). When the contrast increases, the
ISS inversion subseries always converges, but the iterative in-
version method does not converge (Figures 4c and 4d).

CONCLUSIONS

The ISS direct non-linear inversion and the iterative inversion
are examined and compared in a 1D, one parameter, and a sin-
gle horizontal reflector case, where the velocity is assumed to
be known above the reflector and unknown below the reflector.
The rate of convergence of the ISS inversion method is analyt-
ically and numerically studied. From the analytic example, we
show that when the reflection coefficients R < 0.618, the ISS
inversion subseries is a term-by-term improvement towards
determining medium properties; when R > 0.618, the inver-
sion subseries still converges, but the estimation will locally
be less accurate before it converges. Numerical results show
that when the velocity contrasts are small, i.e., the reflection
coefficients are small, both inversion methods converge and

(a) c1 = 2000,R = 0.1429 (b) c1 = 3000,R = 0.3333

(c) c1 = 4500,R = 0.5000 (d) c1 = 9000,R = 0.7143

Figure 4: The ratio of the estimated velocity and the actual
velocity: The horizontal axis is the order of the ISS suberies
or the iterative numbers, and the vertical axis shows the value.
The red line is the actual ratio, which is 1. The green and blue
lines show the ratios by using the ISS inversion method and
the iterative inversion method.

the ISS inversion method converges faster than the iterative in-
version method. When velocity contrasts increase, the reflec-
tion coefficients get larger, the iterative inversion method will
not converge when R > 0.5, while the ISS inversion method
still converges. Hence, for the simplest situation, the iterative
linear inversion is not equivalent to the direct non-linear solu-
tion provided by the inverse scattering series. For more com-
plicated circumstances (e.g., the elastic non-normal incidence
case), the difference is much greater, not just on the algorithms,
but also on data requirements and on how the band-limited
noisy nature of the seismic data impact the inverse operators
in iterative linear inversion but not in the ISS direct inversion.
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